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Let us consider

div(A(x)Du) = F +divGg in Q C R” (1)
e ) bounded open set in R”
e u:Q—R
e G:Q—R"
e F: Q- R

o A :Q — R™" measurable matrix valued function

Example
Au

Il
-
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The Assumptions

There exist constants «, 5 > 0 such that

alél* < (A(x)€,€) (2)
A < 5 (3)
for a.e. x € Q and for every £ € R".
F e [3(Q) (4)
G e L*(Q,R") (5)

let pe R, 1 < p<oo,

LP(Q) = {f : Q — R, f measurable and |f|P is integrable}
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Classical solutions versus distributional solutions

e uis a classical solution if u € C?(Q) satisfies (1)
pointwise

e uis a distributional (weak) solution if u € W2(Q) is
such that

/Q (A(x)Du, D) dx — /Q Fodx + /Q (G, Dy) dx

for every p € C5°(Q).

A classical solution is a weak solution (integration by parts)
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We say that u € LP(Q2) has weak derivatives (v, ..., v,) = Du
in LPifforalli=1,....n

/uD,-go dx = —/ vipdx Yy e C°(Q)
Q Q

The class of functions u € LP(2) that possess weak derivatives
in LP is denoted by W1P(Q).
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The Sobolev space, denoted by W*P(Q) (1 < p < o0) is the
linear space consisting of all functions having weak derivatives:
Def € LP(Q) for each «, |a| < k. WkP(Q) is equipped with
the norm:

1
1Fllkp = Z/Q!D“f(x)lpdx if p # oo

la| <k

and

[ llk,00 = max||Df ||
lo| <k
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Standard Program

@ Existence of a weak solution
© Regularity of the weak solution

© If the weak solution is sufficiently regular then is a
classical solution.
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A first step: the Caccioppoli inequality

Theorem (Caccioppoli inequality)

Let u € W'2(Q) be a weak solution to the equation (1) under
the assumptions (2), (3), (4), (5). Then there exists a
constant ¢ = c(«, [3, n) such that the following inequality

C
DuP < / ju— P+ c(r—pp [ |FP
/Bp (r—p)?Js, B,

+ c [ |G)?
B

holds for every balls B, C B, C Q (u, = ﬁ g, udx).
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Sketch of the proof
Let B, C B, C Q and let n € C5°(B,) be a cut-off function s.t.

0<n<1l n=1inB, |Dy<—

r —

Using ¢ = n?(u — u,) as test function in (1), we get

/ 2(A(x) Du, Du) + 2 / n(A(x)Du, D — u,))

r r

-/ RF- ) /r<n297 Du)+2 | (G Duu — u)

- r
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/ 72(A(x)Du, Du) < 2 / 1 AG)| | Dul| Dl — u

B, Br

+ /nZIfllu—ur|+/n2lgllDUI+2 G/1Dnllu —
r r Br

The growth assumption (3) and ellipticity assumption (2) yield

c(B
a/ PI0uP < ﬁ/ nIDU\IU—Ur|+/ P F | — u]
JB, r—pJs, B,

C
T /n2|g||Du|+—/ Gllu— u
B, r—pJs
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2
Using Young's inequality : ab < ca® + —
€

oz/ n?|Dul* < 5/ 712]Du|2—|—c(—ﬁ)2 lu— u,|?
J B, J B, e(r—p)? Jg,

T dr—@{/nuf+c/|m2
B, B,

Choosing ¢ = % we have

(Y/ 7]2|DU|2 < (C(Oé;ﬁ)l/ ’U—U,‘z
; r=pr) Js

boclr=pf [ 17 [ o
B, B,

We conclude recalling that n = 1 on B,.
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Hilbert regularity

Our aim is to prove the higher differentiability of the weak

solutions.
Let u € W2(Q) be a solution to
Au=f
Assume that u € W22(Q) and let us differentiate the equation
%(Au) =A <§—:> = %(f)
SOV = g_; is a solution to

div(Dv) = divf
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The function v satisfies Caccioppoli inequality and so:

[ o< [ wee [ i
B r=Js, B,

ou c ? 5

So, if u possesses weak second derivatives, we have

| p2up< S [ e [ e
B r=Js. B,

2

@
8x,-

r
2
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Remove the extra assumption u € W22(Q)
Let us fix a compact set Q' C Q, and for a smooth kernel

p € C5°(B1(0)), with p > 0 and [, o = 1. Let us consider
the corresponding family of mollifiers (p:).~0. Take a sequence
of mollifier p. and observe that

Q@ A(uxpe) =1 xp

Q uxp. € W22
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By Caccioppoli estimate

/ |D?(u % p2)|? < /|Du*p£ |2+C/ |+ p* (6)

Since D(u  p.) — Du strongly in L? and f % p. — f strongly
in L2, taking the limsup as € — 0 in estimate (6), we get

Iimsup/ |D2(u*p€)|2<£2/ |Du\2—|—c/ ]2
e—0 s r B, .

Therefore u % p. — u in W2*(Q)

loc

/|D2 < [ puPrc| 1P
5 r* Je, By
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Let u € WY2(Q) be a weak solution to the equation (1) under
the ellipticity assumption (2). Assume moreover

A € Lipioc(Q) (7)
F e L/oc(Q) (8)
G € W2(QR") (9)

Then u € W,icz(Q) and the second order Caccioppoli inequality

/ D2 < [/ DgP+5 [ 10w +e [ |f|2]
B, B,

holds for every ball B, C Q.
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Tools: Difference quotient.
Given a function f € LP(Q2), for h € R" and s € {1, ..., n} we
define:

Tenf  f(x 4 hes) — f(x)
h h ’
where e; € R" is the unit vector (0, ...,0,1,0,...0) and 1 in the
s-th position.
The basic properties are:
Q 74(fg)(x) = f(x + eh)7s ng(x) + &(X)7sn(F)(x)

Q [, 7sn(F)(x)g(x) = — [ 7s,n(g)(x)f(x) (if at least one
between f and g have compact support in )
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Q fe Wl,p(Q) = D(TsJ,f) = 7'57th
@ f € LP(Q) then

of
. € Loc() = | [mn()P < c(Q)[AP V' C Q
S Q/
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Sketch of the proof. Case F =G = 0.
Let B, C Q and let n € C§°(B,) be a cut-off function s.t,.

0<n<1l n=1inB; |Dn| <

S0

Using ¢ = 7. »(n?7s.5u) as test function in (1), we get

/ (A(X)Du, 7 _n(D(n*1s pu)) = 0

r

Since 1 has compact support, by Property 2 of different
quotient
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/ (Ts,n(A(x)Du), D(nszjhu)) =0

r

i.e. by Property 1

| (7l A6 D, DU s [ (AG)7en(D). D)) =0

r r
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/772(A(X)Ts,hDu,Ts,hDu> = —2/ n{A(x)7s.nDu, Dnts pu)

r

— / 7 (7 n(A(x))Du, 75 Du)

r

— 2/ n{7s.n(A(x))Du, Dyt pu)

which implies

/7}2<A(X)TsthU,7‘5,hDu> < 2/ n|Dn|| A(x)||7s.nDul|7s nul
B,

r

+ / 12174 n(A(x))|| Dul 720Dt

B,

L2 / 71 D114 (AG)) 1 Dul |72 0]
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Using
e The ellipticity condition (2)
e The boundedness assumption (3) (black term)
e The Lipschitz continuity of A(x) (blue and red)

we get

a/ 772|TS7hDU|2 < clh 772|Du||757hDu|
r Bf

L e(p) / nl7s.nDul | Dl 75t

+ clh| | n|Dul|Dnl|7s pul
B,
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Young's inequality
a/ 7]2|7'57hDU‘2 < 5/ 772]7'57,,Du]2+c5]h|2/ n°|Dul?
B, B, B,
+ 8/v n2|Ts,hDu|2+C€/ ‘Dn|2‘7-s,hu‘2
B, B,
+ e [ fru 4 clb? [ o7 |Duf
i.e.
(y/ 772|7'57hDLI|2 < 25/ 0|7 nDul?

+ < [ IDaPiraauf + clh? [ oPlDu?
B, Br
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Choosing € = ¢ we can reabsorb the first integral

a/ 7/2]7'57;,Du]2 < C/ D'r/|27's’hu2—|—c|h]2/ 7/2]Du]2
B, B, B,

The assumption
o uec WH(Q)
e The Property 4

imply
c|hl|?
a/ 712]7'57;,Du|2 < ’2‘ / |Dul?
JB, r< Js,

' ‘7’5hDU‘2 Cc / 2
a < — [ |Du|
.é <7,

:/rmw<i/mw
2
By r~Js.
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Arguing inductively we can show

Theorem

Let u € W'2(Q) be a weak solution to the equation (1) under
the ellipticity condition (2). Assume moreover

e Ac CHHQ) ie. D¥A € Lipc(Q)

loc

o F e WS(Q)

loc

A g c Wk+172(Q,Rn)

loc

Then u € WS *%(Q).

loc
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Schauder estimates

Analysis of the Holder regularity of weak solutions assuming
some Holder regularity for the data (coefficients and right
hand side)
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Morrey spaces

e () bounded regular domain, i.e. there exists a positive
constant A such that

2N By(x)| > Ap",
Vx € Q, Vp < diamQ.

eletp>1, A>0
The Morrey space LP* is defined as

1
LPMQ) = ue LP(Q): sup — |ulP dx < 400
Xp€S2, 0<p<d|ame B, (x0)NQ2
(10)
it is a Banach space with the norm
1
ull ) = sup -~ |ul? dx

x0€92, 0<p<d|ame By (x0)NQ2
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o uc LPNQ) = updxgc)‘
) /( uPdx < cp
. ()CL“()CU’(Q)

o LPO(Q) ~ LP(Q)

o LP(Q) ~ [*(Q)

o [PAQ)=0,if A>n.
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Campanato spaces

Let Q be a bounded regular domain, p > 1 and A > 0.
The Campanato space £P* is defined as:

LPAQ) = (11)
1
=quelP(): sup — |u— uy, ,|P dx < 400
X0€Q, 0<p<d|ame B, (x0)NQ2
(12)
the quantity
1
lullgor@ = sup  — U — s, p|” dx

X0 EQ, 0<p<d|ame Bp(XO)mQ

is a seminorm (constant functions have seminorm 0).
The norm is defined as

H|U|H£PV\(Q) = HUHLP —+ [u]ﬁp,A(Q)
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o LPNQ) ~ LPAQ), 0< A <n

o [2(Q) C LP"(Q)
Example log |x| € £1((0,1]) \ L>°((0, 1])

e Campanato Theorem Forn< A< n+pand a = A;” we
have £””\(Q) ~ C%(Q).
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Holder space

The Holder space C<(Q) consists of those functions on Q
having continuous derivatives up through order k and such
that the kth partial derivatives are Holder continuous with
exponent «, where 0 < o < 1. If the Holder coefficient

|U|C0a _ sup ‘U(X)—U(y)|
X, yEQ x#y |X - y|a

is finite, then the function u is said to be Holder continuous
with exponent a.
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Theorem

Let & : [0, Ro] — [0, +00) be non decreasing. Suppose that
there exist positive constant A, B, «, [ with o > 3 such that

d(p) < A [(%)a + 2| o(R) + BR?

for every 0 < p < R < Ry. If there exists ¢g = eo(, 3, A)
such that the previous estimate holds for every ¢ < €q then

o(p) < e(0,5,4) ()" [o(R) + R

Since ®(R) < ®(Ry) and R? < RY

o(p) < el 5,4, Ro)(£)
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Schauder estimates: constant coefficients case and
homogeneous equations

Theorem
Let u € W'2(Q) be a weak solution of the equation

div(ADu) = 0 (13)

with A an elliptic constant matrix. Then

/ |u|2dx<c<p)/ |ul? dx (14)
By (x0) R/ Jer(x)

and

/ lu—u, dx < c<p>n+2/ lu— ugl?dx  (15)
P X R R
Bp(x0) Br(x0)

for every 0 < p < R < Ry with Bg, C Q.



Non homogeneous equations

Let u € W2(Q) be a weak solution of the equation
div(ADu) = divg
with A an elliptic constant matrix. Assume
Ge L

Then
Du € £

for every 0 < A < n+ 2.
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Holder regularity- A first Schauder estimate

The Holder regularity of the datum G transfers to the gradient
of the solution.
Indeed, if n < A < n+ 2, previous theorem

g c £2,)\ ~ CO,a

= Du e L*>" ~ CO«
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Non constant coefficients

Theorem

Suppose that A(x) € C°(Q) is an elliptic matrix. Let
u € WY2(Q) be a weak solution

div(A(x)Du) = divG

If
GeL* or GeL* >0
then
Du e [**
for0< A<n

Morrey regularity not Campanato!
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Holder regularity- A second Schauder estimate

The Holder regularity of the datum G, in case of continuous
coefficients transfer to the solution (not to its gradient).
Since

GecL* = Duc*

we have
2 A+2
/ lu—u,|” < cp
BP

Then v € L2M2 ~ CO%if A\ >n—2
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Schauder Theorem

Suppose A(x) € C®*(Q) is an elliptic matrix. Let
u € WY2(Q) be a weak solution of the equation

div(A(x)Du) = divG.

IfG € C%P then
Du e C%

7 = min{a, 8.
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The LP theory

Let u € W2(Q) be a weak solution of the equation
div(A(x)Du) = divG
with A an elliptic constant matrix. Assume that
Gelf

then
Du € [P

for every p > 2
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Theorem

Suppose that A € C°(Q) is an elliptic matrix. Let
u € WY2(Q) be a weak solution of the equation

div(A(x)Du) = divG

If
gel/clr

then
Du € LP

for every p > 2
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