Introduction to Regularity Theory

Teresa Radice

Dipartimento di Matematica e Applicazioni R. Caccioppoli, Università degli Studi di Napoli "Federico II" e-mail: teresa.radice@unina.it

References

- M. Giaquinta, Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies 105, Princeton University Press (1983)
- M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic Systems, Lectures in Mathematics, ETH Zurich (1993)

Let us consider

$$\operatorname{div}(\mathcal{A}(x)Du) = \mathcal{F} + \operatorname{div}\mathcal{G} \quad \text{in } \Omega \subset \mathbb{R}^n$$
 (1)

- Ω bounded open set in \mathbb{R}^n
- $u:\Omega\to\mathbb{R}$
- $\mathcal{G}:\Omega\to\mathbb{R}^n$
- $\mathcal{F}:\Omega\to\mathbb{R}$
- $\mathcal{A}: \Omega \to \mathbb{R}^{n \times n}$ measurable matrix valued function

Example

$$\Delta u = f$$

The Assumptions

There exist constants $\alpha, \beta > 0$ such that

$$\alpha |\xi|^2 \leqslant \langle \mathcal{A}(x)\xi, \xi \rangle \tag{2}$$

$$|\mathcal{A}(x)| \leqslant \beta \tag{3}$$

for a.e. $x \in \Omega$ and for every $\xi \in \mathbb{R}^n$.

$$\mathcal{F} \in L^2(\Omega) \tag{4}$$

$$\mathcal{G} \in L^2(\Omega, \mathbb{R}^n) \tag{5}$$

Let $p \in \mathbb{R}$, $1 \leqslant p < \infty$,

 $L^p(\Omega) = \{f : \Omega \to \mathbb{R}, f \text{ measurable and } |f|^p \text{ is integrable}\}$

Classical solutions versus distributional solutions

- u is a classical solution if $u \in C^2(\Omega)$ satisfies (1) pointwise
- u is a distributional (weak) solution if $u \in W^{1,2}(\Omega)$ is such that

$$\int_{\Omega} \langle \mathcal{A}(x) Du, D\varphi \rangle \, dx = \int_{\Omega} \mathcal{F}\varphi \, dx + \int_{\Omega} \langle \mathcal{G}, D\varphi \rangle \, dx$$

for every $\varphi \in C_0^{\infty}(\Omega)$.

A classical solution is a weak solution (integration by parts)

We say that $u \in L^p(\Omega)$ has weak derivatives $(v_1, ..., v_n) = Du$ in L^p if for all i = 1, ..., n

$$\int_{\Omega} u D_i \varphi \, dx = - \int_{\Omega} v_i \varphi \, dx \quad \forall \varphi \in C_0^{\infty}(\Omega)$$

The class of functions $u \in L^p(\Omega)$ that possess weak derivatives in L^p is denoted by $W^{1,p}(\Omega)$.

The Sobolev space, denoted by $W^{k,p}(\Omega)$ $(1 \le p \le \infty)$ is the linear space consisting of all functions having weak derivatives: $D^{\alpha}f \in L^p(\Omega)$ for each α , $|\alpha| \le k$. $W^{k,p}(\Omega)$ is equipped with the norm:

$$||f||_{k,p} = \left(\sum_{|\alpha| \leqslant k} \int_{\Omega} |D^{\alpha}f(x)|^p dx\right)^{\frac{1}{p}} \text{ if } p \neq \infty$$

and

$$||f||_{k,\infty} = \max_{|\alpha| \leqslant k} ||D^{\alpha}f||_{\infty}$$

Standard Program

- Existence of a weak solution
- Regularity of the weak solution
- If the weak solution is sufficiently regular then is a classical solution.

A first step: the Caccioppoli inequality

Theorem (Caccioppoli inequality)

Let $u \in W^{1,2}(\Omega)$ be a weak solution to the equation (1) under the assumptions (2), (3), (4), (5). Then there exists a constant $c = c(\alpha, \beta, n)$ such that the following inequality

$$\int_{B_{\rho}} |Du|^{2} \leqslant \frac{c}{(r-\rho)^{2}} \int_{B_{r}} |u-u_{r}|^{2} + c(r-\rho)^{2} \int_{B_{r}} |\mathcal{F}|^{2}$$

$$+ c \int_{B_{r}} |\mathcal{G}|^{2}$$

holds for every balls $B_{\rho} \subset B_r \subset \Omega$ $(u_r = \frac{1}{|B_r|} \int_{B_r} u dx)$.

Sketch of the proof

Let $B_{\rho} \subset B_r \subset \Omega$ and let $\eta \in C_0^{\infty}(B_r)$ be a cut-off function s.t.

$$0\leqslant \eta\leqslant 1,\ \eta=1\ \mathrm{in}\ B_{
ho},\ |D\eta|\leqslant rac{c}{r-
ho}.$$

Using $\varphi = \eta^2(u - u_r)$ as test function in (1), we get

$$\begin{split} &\int_{B_r} \eta^2 \langle \mathcal{A}(x) Du, Du \rangle + 2 \int_{B_r} \eta \langle \mathcal{A}(x) Du, D\eta (u - u_r) \rangle \\ &= \int_{B_r} \eta^2 \mathcal{F}(u - u_r) + \int_{B_r} \langle \eta^2 \mathcal{G}, Du \rangle + 2 \int_{B_r} \eta \langle \mathcal{G}, D\eta (u - u_r) \rangle \end{split}$$

$$\int_{B_r} \eta^2 \langle \mathcal{A}(x) Du, Du \rangle \leqslant 2 \int_{B_r} \eta |\mathcal{A}(x)| |Du| |D\eta| |u - u_r|$$

$$+ \int_{B_r} \eta^2 |\mathcal{F}| |u - u_r| + \int_{B_r} \eta^2 |\mathcal{G}| |Du| + 2 \int_{B_r} |\mathcal{G}| |D\eta| |u - u_r|$$

The growth assumption (3) and ellipticity assumption (2) yield

$$\alpha \int_{B_r} \eta^2 |Du|^2 \leqslant \frac{c(\beta)}{r - \rho} \int_{B_r} \eta |Du| |u - u_r| + \int_{B_r} \eta^2 |\mathcal{F}| |u - u_r|$$

$$+ \int_{B_r} \eta^2 |\mathcal{G}| |Du| + \frac{c}{r - \rho} \int_{B_r} |\mathcal{G}| |u - u_r|$$

Using Young's inequality : $ab \leqslant \varepsilon a^2 + \frac{b^2}{\varepsilon}$

$$\alpha \int_{B_r} \eta^2 |Du|^2 \leqslant \varepsilon \int_{B_r} \eta^2 |Du|^2 + \frac{c(\beta)}{\varepsilon(r-\rho)^2} \int_{B_r} |u-u_r|^2 + c(r-\rho)^2 \int_{B_r} \eta |\mathcal{F}|^2 + c \int_{B_r} |\mathcal{G}|^2$$

Choosing $\varepsilon = \frac{\alpha}{2}$ we have

$$\alpha \int_{B_r} \eta^2 |Du|^2 \leqslant \frac{c(\alpha, \beta)}{(r - \rho)^2} \int_{B_r} |u - u_r|^2 + c(r - \rho)^2 \int_{B_r} |\mathcal{F}|^2 + c \int_{B_r} |\mathcal{G}|^2$$

We conclude recalling that $\eta = 1$ on B_{ρ} .

Hilbert regularity

Our aim is to prove the higher differentiability of the weak solutions.

Let $u \in W^{1.2}_{loc}(\Omega)$ be a solution to

$$\Delta u = f$$

Assume that $u \in W^{2,2}_{loc}(\Omega)$ and let us differentiate the equation

$$\frac{\partial}{\partial x_i}(\Delta u) = \Delta \left(\frac{\partial u}{\partial x_i}\right) = \frac{\partial}{\partial x_i}(f)$$

so $v = \frac{\partial u}{\partial x_i}$ is a solution to

$$\operatorname{div}(Dv) = \operatorname{div} f$$

The function ν satisfies Caccioppoli inequality and so:

$$\int_{B_{\frac{r}{2}}} |Dv|^2 \leqslant \frac{c}{r^2} \int_{B_r} |v|^2 + c \int_{B_r} |f|^2$$

i.e.

$$\int_{B_{\frac{r}{2}}} \left| D\left(\frac{\partial u}{\partial x_i}\right) \right|^2 \leqslant \frac{c}{r^2} \int_{B_r} \left| \frac{\partial u}{\partial x_i} \right|^2 + c \int_{B_r} |f|^2$$

So, if u possesses weak second derivatives, we have

$$\int_{B_{\frac{r}{2}}} |D^2 u|^2 \leqslant \frac{c}{r^2} \int_{B_r} |D u|^2 + c \int_{B_r} |f|^2$$

Remove the extra assumption $u \in W^{2,2}_{loc}(\Omega)$ Let us fix a compact set $\Omega' \subset \Omega$, and for a smooth kernel $\rho \in C_0^\infty(B_1(0))$, with $\rho \geq 0$ and $\int_{B_1(0)} \varphi = 1$. Let us consider the corresponding family of mollifiers $(\rho_\varepsilon)_{\varepsilon>0}$. Take a sequence of mollifier ρ_ε and observe that

- $u*\rho_{\varepsilon}\in W^{2,2}$

By Caccioppoli estimate

$$\int_{B_{\frac{r}{2}}} |D^2(u*\rho_{\varepsilon})|^2 \leqslant \frac{c}{r^2} \int_{B_r} |D(u*\rho_{\varepsilon})|^2 + c \int_{B_r} |f*\rho_{\varepsilon}|^2$$
 (6)

Since $D(u * \rho_{\varepsilon}) \to Du$ strongly in L^2 and $f * \rho_{\varepsilon} \to f$ strongly in L^2 , taking the \limsup as $\varepsilon \to 0$ in estimate (6), we get

$$\limsup_{\varepsilon \to 0} \int_{B_{\frac{r}{2}}} |D^2(u*\rho_\varepsilon)|^2 \leqslant \frac{c}{r^2} \int_{B_r} |Du|^2 + c \int_{B_r} |f|^2$$

Therefore $u * \rho_{\varepsilon} \rightharpoonup u$ in $W^{2,2}_{loc}(\Omega)$

$$\int_{B_{\mathcal{L}}} |D^2 u|^2 \leqslant \frac{c}{r^2} \int_{B_r} |D u|^2 + c \int_{B_r} |f|^2$$

Theorem

Let $u \in W^{1,2}(\Omega)$ be a weak solution to the equation (1) under the ellipticity assumption (2). Assume moreover

$$\mathcal{A} \in Lip_{loc}(\Omega)$$
 (7)

$$\mathcal{F} \in L^2_{loc}(\Omega) \tag{8}$$

$$\mathcal{G} \in W^{1,2}_{loc}(\Omega,\mathbb{R}^n) \tag{9}$$

Then $u \in W^{2,2}_{loc}(\Omega)$ and the second order Caccioppoli inequality

$$\int_{B_{\frac{r}{2}}} |D^2 u|^2 \leqslant c \left[\int_{B_r} |D\mathcal{G}|^2 + \frac{c}{r^2} \int_{B_r} |Du|^2 + c \int_{B_r} |\mathcal{F}|^2 \right]$$

holds for every ball $B_r \subset \Omega$.

Tools: Difference quotient.

Given a function $f \in L^p(\Omega)$, for $h \in \mathbb{R}^n$ and $s \in \{1,...,n\}$ we define:

$$\Delta_{s,h}f=\frac{ au_{s,h}f}{h}=\frac{f(x+he_s)-f(x)}{h},$$

where $e_s \in \mathbb{R}^n$ is the unit vector (0, ..., 0, 1, 0, ...0) and 1 in the s-th position.

The basic properties are:

- ② $\int_{\Omega} \tau_{s,h}(f)(x)g(x) = -\int_{\Omega} \tau_{s,h}(g)(x)f(x)$ (if at least one between f and g have compact support in Ω)

- $\bullet f \in W^{1,p}(\Omega) \Rightarrow D(\tau_{s,h}f) = \tau_{s,h}Df$
- $f \in L^p(\Omega)$ then

$$\frac{\partial f}{\partial x_s} \in L^p_{loc}(\Omega) \Longleftrightarrow \int_{\Omega'} |\tau_{s,h}(f)|^p \leqslant c(\Omega') |h|^p \quad \forall \Omega' \subset \Omega$$

Sketch of the proof. Case $\mathcal{F} = \mathcal{G} = 0$.

Let $B_r \subset \Omega$ and let $\eta \in C_0^{\infty}(B_r)$ be a cut-off function s.t,.

$$0\leqslant \eta\leqslant 1,\ \eta=1\ \mathrm{in}\ B_{\frac{r}{2},}\ |D\eta|\leqslant \frac{c}{r}.$$

Using $\varphi = \tau_{s,-h}(\eta^2 \tau_{s,h} u)$ as test function in (1), we get

$$\int_{B_{s}} \langle \mathcal{A}(x)Du, \tau_{s,-h}(D(\eta^{2}\tau_{s,h}u)) \rangle = 0$$

Since η has compact support, by Property 2 of different quotient

$$\int_{B_r} \langle \tau_{s,h}(\mathcal{A}(x)Du), D(\eta^2 \tau_{s,h} u) \rangle = 0$$

i.e. by Property 1

$$\int_{B_r} \langle \tau_{s,h}(\mathcal{A}(x)) Du, D(\eta^2 \tau_{s,h} u) \rangle + \int_{B_r} \langle \mathcal{A}(x) \tau_{s,h}(Du), D(\eta^2 \tau_{s,h} u) \rangle = 0$$

$$\int_{B_{r}} \eta^{2} \langle \mathcal{A}(x) \tau_{s,h} Du, \tau_{s,h} Du \rangle = -2 \int_{B_{r}} \eta \langle \mathcal{A}(x) \tau_{s,h} Du, D\eta \tau_{s,h} u \rangle
- \int_{B_{r}} \eta^{2} \langle \tau_{s,h} (\mathcal{A}(x)) Du, \tau_{s,h} Du \rangle
- 2 \int_{B_{s}} \eta \langle \tau_{s,h} (\mathcal{A}(x)) Du, D\eta \tau_{s,h} u \rangle$$

which implies

$$\int_{B_{r}} \eta^{2} \langle \mathcal{A}(x) \tau_{s,h} Du, \tau_{s,h} Du \rangle \leq 2 \int_{B_{r}} \eta |D\eta| |\mathcal{A}(x)| |\tau_{s,h} Du| |\tau_{s,h} u|
+ \int_{B_{r}} \eta^{2} |\tau_{s,h} (\mathcal{A}(x))| |Du| |\tau_{s,h} Du|
+ 2 \int_{B_{r}} \eta |D\eta| |\tau_{s,h} (\mathcal{A}(x))| |Du| |\tau_{s,h} u|$$

Using

- The ellipticity condition (2)
- The boundedness assumption (3) (black term)
- The Lipschitz continuity of A(x) (blue and red)

we get

$$\alpha \int_{B_{r}} \eta^{2} |\tau_{s,h} Du|^{2} \leqslant c|h| \int_{B_{r}} \eta^{2} |Du| |\tau_{s,h} Du|$$

$$+ c(\beta) \int_{B_{r}} \eta |\tau_{s,h} Du| |D\eta| |\tau_{s,h} u|$$

$$+ c|h| \int_{B} \eta |Du| |D\eta| |\tau_{s,h} u|$$

Young's inequality

$$\alpha \int_{B_r} \eta^2 |\tau_{s,h} Du|^2 \leqslant \varepsilon \int_{B_r} \eta^2 |\tau_{s,h} Du|^2 + c_{\varepsilon} |h|^2 \int_{B_r} \eta^2 |Du|^2$$

$$+ \varepsilon \int_{B_r} \eta^2 |\tau_{s,h} Du|^2 + c_{\varepsilon} \int_{B_r} |D\eta|^2 |\tau_{s,h} u|^2$$

$$+ \varepsilon \int_{B_r} \eta^2 |\tau_{s,h} u|^2 + c|h|^2 \int_{B_r} \eta^2 |Du|^2$$

i.e.

$$\alpha \int_{B_r} \eta^2 |\tau_{s,h} Du|^2 \leqslant 2\varepsilon \int_{B_r} \eta^2 |\tau_{s,h} Du|^2$$

$$+ c_\varepsilon \int_{B_r} |D\eta|^2 |\tau_{s,h} u|^2 + c|h|^2 \int_{B_r} \eta^2 |Du|^2$$

Choosing $\varepsilon = \frac{\alpha}{4}$ we can reabsorb the first integral

$$\alpha \int_{B_r} \eta^2 |\tau_{s,h} Du|^2 \le c \int_{B_r} |D\eta|^2 |\tau_{s,h} u|^2 + c|h|^2 \int_{B_r} \eta^2 |Du|^2$$

The assumption

- $u \in W^{1,2}(\Omega)$
- The Property 4

imply

$$\alpha \int_{B_r} \eta^2 |\tau_{s,h} Du|^2 \leqslant \frac{c|h|^2}{r^2} \int_{B_r} |Du|^2$$

and so

$$\alpha \int_{B_{\frac{r}{2}}} \frac{|\tau_{s,h} Du|^2}{|h|^2} \leqslant \frac{c}{r^2} \int_{B_r} |Du|^2$$
$$\Rightarrow \int_{B_r} |D^2 u|^2 \leqslant \frac{c}{r^2} \int_{B_r} |Du|^2$$

Arguing inductively we can show

Theorem

Let $u \in W^{1,2}(\Omega)$ be a weak solution to the equation (1) under the ellipticity condition (2). Assume moreover

- $A \in C^{k,1}_{loc}(\Omega)$ i.e. $D^k A \in Lip_{loc}(\Omega)$
- $\mathcal{F} \in W^{k,2}_{loc}(\Omega)$
- $\mathcal{G} \in W^{k+1,2}_{loc}(\Omega,\mathbb{R}^n)$

Then $u \in W_{loc}^{k+2,2}(\Omega)$.

Schauder estimates

Analysis of the Hölder regularity of weak solutions assuming some Hölder regularity for the data (coefficients and right hand side)

Morrey spaces

• Ω bounded regular domain, i.e. there exists a positive constant A such that

$$|\Omega \cap B_{\rho}(x)| > A\rho^n,$$

$$\forall x \in \overline{\Omega}, \ \forall \rho < \mathsf{diam}\Omega.$$

• Let $p \geqslant 1$, $\lambda > 0$

The Morrey space $L^{p,\lambda}$ is defined as

$$L^{p,\lambda}(\Omega) = \left\{ u \in L^p(\Omega) : \sup_{x_0 \in \Omega, 0 < \rho < \operatorname{diam}\Omega} \frac{1}{\rho^{\lambda}} \int_{B_{\rho}(x_0) \cap \Omega} |u|^p \, dx < +\infty \right\}$$
(10)

it is a Banach space with the norm

$$||u||_{L^{p,\lambda}(\Omega)} = \sup_{x_0 \in \Omega, 0 < \rho < \operatorname{diam}\Omega} \frac{1}{\rho^{\lambda}} \int_{B_{\rho}(x_0) \cap \Omega} |u|^p dx$$

Remarks

•
$$u \in L^{p,\lambda}(\Omega) \iff \int_{B_{\rho(x_0)\cap\Omega}} |u|^p dx \leqslant c\rho^{\lambda}$$

- $L^{\infty}(\Omega) \subset L^{p,\lambda}(\Omega) \subset L^p(\Omega)$
- $L^{p,0}(\Omega) \simeq L^p(\Omega)$
- $L^{p,n}(\Omega) \simeq L^{\infty}(\Omega)$
- $L^{p,\lambda}(\Omega) = 0$, if $\lambda > n$.

Campanato spaces

Let Ω be a bounded regular domain, $p \geqslant 1$ and $\lambda > 0$.

The Campanato space $\mathcal{L}^{p,\lambda}$ is defined as:

$$\mathcal{L}^{p,\lambda}(\Omega) = \tag{11}$$

$$= \left\{ u \in L^{p}(\Omega) : \sup_{\mathsf{x}_{0} \in \Omega, 0 < \rho < \operatorname{\mathsf{diam}}\Omega} \frac{1}{\rho^{\lambda}} \int_{B_{\rho}(\mathsf{x}_{0}) \cap \Omega} |u - u_{\mathsf{x}_{o}, \rho}|^{p} \, dx < +\infty \right\}$$

$$\tag{12}$$

the quantity

$$||u||_{\mathcal{L}^{p,\lambda}(\Omega)} = \sup_{\mathsf{x}_0 \in \Omega, 0 < \rho < \mathsf{diam}\Omega} \frac{1}{\rho^{\lambda}} \int_{B_{\rho}(\mathsf{x}_0) \cap \Omega} |u - u_{\mathsf{x}_0,\rho}|^p \, d\mathsf{x}$$

is a seminorm (constant functions have seminorm 0).

The norm is defined as

$$|||u|||_{\mathcal{L}^{p,\lambda}(\Omega)} = ||u||_{L^p} + [u]_{\mathcal{L}^{p,\lambda}(\Omega)}$$

Remarks

- $\mathcal{L}^{p,\lambda}(\Omega) \simeq L^{p,\lambda}(\Omega)$, $0 < \lambda < n$
- $L^{\infty}(\Omega) \subset \mathcal{L}^{p,n}(\Omega)$ Example $\log |x| \in \mathcal{L}^{1,1}((0,1]) \setminus L^{\infty}((0,1])$
- Campanato Theorem For $n < \lambda \leqslant n + p$ and $\alpha = \frac{\lambda n}{p}$ we have $\mathcal{L}^{p,\lambda}(\Omega) \simeq C^{0,\alpha}(\Omega)$.

Hölder space

The Hölder space $C^{k,\alpha}(\Omega)$ consists of those functions on Ω having continuous derivatives up through order k and such that the kth partial derivatives are Hölder continuous with exponent α , where $0 < \alpha \leqslant 1$. If the Hölder coefficient

$$|u|_{C^{0,\alpha}} = \sup_{x,y \in \Omega, x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

is finite, then the function u is said to be Hölder continuous with exponent α .

Theorem

Let $\Phi: [0, R_0] \to [0, +\infty)$ be non decreasing. Suppose that there exist positive constant A, B, α , β with $\alpha > \beta$ such that

$$\Phi(\rho) \leqslant A\left[\left(\frac{\rho}{R}\right)^{\alpha} + \varepsilon\right]\Phi(R) + BR^{\beta}$$

for every $0 < \rho < R \leqslant R_0$. If there exists $\varepsilon_0 = \varepsilon_0(\alpha, \beta, A)$ such that the previous estimate holds for every $\varepsilon < \varepsilon_0$ then

$$\Phi(\rho) \leqslant c(\alpha, \beta, A) \left(\frac{\rho}{R}\right)^{\beta} \left[\Phi(R) + R^{\beta}\right]$$

Since $\Phi(R) \leqslant \Phi(R_0)$ and $R^{\beta} \leqslant R_0^{\beta}$

$$\Phi(\rho) \leqslant c(\alpha, \beta, A, R_0) \left(\frac{\rho}{R}\right)^{\beta}$$

Schauder estimates: constant coefficients case and homogeneous equations

Theorem

Let $u \in W^{1,2}(\Omega)$ be a weak solution of the equation

$$\operatorname{div}(\mathcal{A}Du) = 0 \tag{13}$$

with A an elliptic constant matrix. Then

$$\int_{B_{\rho}(x_0)} |u|^2 dx \leqslant c \left(\frac{\rho}{R}\right)^n \int_{B_{R}(x_0)} |u|^2 dx \tag{14}$$

and

$$\int_{B_{\rho}(x_0)} |u - u_{\rho}|^2 dx \leqslant c \left(\frac{\rho}{R}\right)^{n+2} \int_{B_{R}(x_0)} |u - u_{R}|^2 dx \quad (15)$$

for every $0 < \rho < R < R_0$ with $B_{R_0} \subset \Omega$.

Non homogeneous equations

Theorem

Let $u \in W^{1,2}(\Omega)$ be a weak solution of the equation

$$div(ADu) = divG$$

with A an elliptic constant matrix. Assume

$$\mathcal{G}\in\mathcal{L}^{2,\lambda}$$

Then

$$Du \in \mathcal{L}^{2,\lambda}$$

for every $0 < \lambda < n + 2$.

Hölder regularity- A first Schauder estimate

The Hölder regularity of the datum \mathcal{G} transfers to the gradient of the solution.

Indeed, if $n < \lambda < n + 2$, previous theorem

$$\mathcal{G} \in \mathcal{L}^{2,\lambda} \simeq \mathcal{C}^{0,\alpha}$$

$$\Rightarrow Du \in \mathcal{L}^{2,\lambda} \simeq C^{0,\alpha}$$

Non constant coefficients

Theorem

Suppose that $A(x) \in C^0(\Omega)$ is an elliptic matrix. Let $u \in W^{1,2}(\Omega)$ be a weak solution

$$\operatorname{div}(\mathcal{A}(x)Du)=\operatorname{div}\mathcal{G}$$

lf

$$\mathcal{G} \in \mathcal{L}^{2,\mu}$$
 or $\mathcal{G} \in \mathcal{L}^{2,\mu}$ $\mu > 0$

then

$$Du \in L^{2,\lambda}$$

for $0 < \lambda < n$ Morrey regularity not Campanato!

Hölder regularity- A second Schauder estimate

The Hölder regularity of the datum \mathcal{G} , in case of continuous coefficients transfer to the solution (not to its gradient). Since

$$\mathcal{G} \in \mathcal{L}^{2,\lambda} \Rightarrow Du \in L^{2,\lambda}$$

we have

$$\int_{B_{\rho}} |u - u_{\rho}|^2 \leqslant c \rho^{\lambda + 2}$$

Then $u \in \mathcal{L}^{2,\lambda+2} \simeq C^{0,\alpha}$ if $\lambda > n-2$

Schauder Theorem

Theorem

Suppose $A(x) \in C^{0,\alpha}(\Omega)$ is an elliptic matrix. Let $u \in W^{1,2}(\Omega)$ be a weak solution of the equation

$$\operatorname{div}(\mathcal{A}(x)Du)=\operatorname{div}\mathcal{G}.$$

If
$$G \in C^{0,\beta}$$
 then

$$Du \in C^{0,\gamma}$$

$$\gamma = \min\{\alpha, \beta\}.$$

The L^p theory

Theorem

Let $u \in W^{1,2}(\Omega)$ be a weak solution of the equation

$$\operatorname{div}(\mathcal{A}(x)Du)=\operatorname{div}\mathcal{G}$$

with ${\cal A}$ an elliptic constant matrix. Assume that

$$G \in L^p$$

then

$$Du \in L^p$$

for every $p \geqslant 2$

Theorem

Suppose that $A \in C^0(\Omega)$ is an elliptic matrix. Let $u \in W^{1,2}(\Omega)$ be a weak solution of the equation

$$\operatorname{div}(\mathcal{A}(x)Du)=\operatorname{div}\mathcal{G}$$

lf

 $\mathcal{G} \in \mathcal{L}^p$

then

 $Du \in L^p$

for every $p \geqslant 2$