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The name

The name calculus of variations comes from procedures of Lagrange
involving an operator δ called a variation.

The calculus of variations broadly interpreted includes all theory and
practice concerning the existence and characterization of minima, maxima,
and other critical values of a real-valued functional. – G.M. Ewing,
Calculus of Variations with Applications, Dover Publ., New York, 1969.

The link between Calculus of Variations and Partial Differential Equations
has always been strong, because variational problems produce, via their
Euler-Lagrange equation, a differential equation and, conversely, a
differential equation can often be studied by variational methods.
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O. Bolza, Lectures on the Calculus of Variations,
The University of Chicago Press, 1904.
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H. Hancock, Lectures on the Calculus of Variations,
(The Weierstrassian Theory), University of Cincinati, 1904.
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Two approaches

In the calculus of variations there are, roughly speaking, two ways of
proceeding: the classical (indirect) and the direct methods.

Consider minimization problems in RN .

Let X ⊂ RN , F : X → R and

(P) inf{F (x) | x ∈ X}.

The first method consists, if F is continuously differentiable, in finding
solutions x∗ ∈ X of

F ′(x) = 0, x ∈ X .

Then, by analyzing the behavior of the higher derivatives of F , we can
determine if x∗ is a minimum (global or local), a maximum (global or
local) or just a stationary point.
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Two methods

The second method consists in considering a minimizing sequence
{xn} ⊂ X so that

F (xn)→ inf{F (x) | x ∈ X}.

Then, with appropriate hypotheses on F , we prove that the sequence is
compact in X , meaning that

xn → x∗ ∈ X , as n→∞.

Finally if F is lower semicontinuous, meaning that

F (x∗) ≤ lim inf
n

F (xn)

we have indeed shown that x∗ is a minimizer of (P).
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Two methods

We can proceed in a similar manner for problems of the calculus of
variations.

The first and second methods are then called, respectively, classical and
direct methods. However, the problem is now considerably harder because
we are working in infinite dimensional spaces.
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Classical methods

Recall the basic problem in the calculus of variations

(P) inf
{
I (u) =

∫
Ω
f (x , u(x),∇u(x)) dx | x ∈ X

}
→ min!

where

Ω ⊂ Rn, n ≥ 1 is a bounded open set,

u : Ω→ RN , N ≥ 1 and ∇u ∈ RN×n,

f : Ω× RN × RN×n → R, f = f (x , u, ξ), is continuous,

X is a space of admissible functions which satisfy u = u0 on ∂Ω,
and u0 is a given function.

Contrary to the case of RN , we encounter a preliminary problem: what is
the best choice for the space X of admissible functions.
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Classical methods

A natural choice seems to be X = C 1(Ω). There are several reasons,
which will be clearer during the study of this area deeper, that indicate
that this is not the best choice.

A better choice is the Sobolev space W 1,p(Ω), p ≥ 1. We will say that
u ∈W 1,p(Ω), if u is (weakly) differentiable and if

‖u‖W 1,p =

(∫
Ω
|u(x)|p + |∇u(x)|p dx

)1/p

<∞.
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Classical methods

The classical methods introduced by Euler, Hamilton, Hilbert, Jacobi,
Lagrange, Legendre, Weierstrass and others.

The most important tool is the Euler-Lagrange equation, the equivalent of
F ′(x) = 0 in the finite dimensional case, that should satisfy any
u∗ ∈ C 2(Ω) minimizer of (P), namely (we write here the equation in the
case N = 1)

(E )
n∑

i=1

∂

∂xi
fξi (x , u

∗,∇u∗) = fu(x , u∗,∇u∗) for all x ∈ Ω,

where fξi = ∂f /∂ξi and fu = ∂f /∂u.

A solution u∗ of (E ) is called sometimes a stationary point of I .
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Classical methods. Example

This is the most celebrated problem of the calculus of variations.

In the case of the Dirichlet integral

(P) inf
{
I (u) =

1

2

∫
Ω
|∇u(x)|2 dx | u = u0 on ∂Ω

}
.

The Euler-Lagrange equation reduces to Laplace equation, i.e., ∆u∗ = 0.
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Classical methods

Comments:

In general, finding a C 2 solution of (E ) is a difficult task, unless perhaps
n = 1 or the equation (E ) is linear.

We need to know if a solution u∗ of (E ) is, in fact, a minimizer of (P). If
(u, ξ) 7→ f (x , u, ξ) is convex for every x ∈ Ω, then u∗ is indeed a minimum
of (P); this happens for the Dirichlet integral.

If, however, (u, ξ) 7→ f (x , u, ξ) is not convex, several criteria, specially in
the case n = 1, can be used to determine the nature of the stationary
point. Such criteria are for example, Legendre, Weierstrass,
Weierstrass-Erdmann, Jacobi conditions and other theories.
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Classical methods

Comments:
If Ω = [a, b], i.e., n = 1, then it is possible to show that any minimizer u∗

of (P) satisfies a different form of the Euler-Lagrange equation: for all
x ∈ [a, b], we have

d

dx

(
f (x , u∗(x), u∗

′
(x))− u∗

′
(x)fξ(x , u

∗(x), u∗
′
(x))

)
= fx(x , u∗(x), u∗

′
(x)).

This form is particularly useful when f does not depend explicitely on the
variable x , because then a first integral of (E ) is of the form

f (u∗(x), u∗
′
(x))− u∗

′
(x) fξ(u

∗(x), u∗
′
) = const. for all x ∈ [a, b].
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Classical methods

Another idea is that the solutions to (E ) are also solutions (and
conversely) of {

u′(x) = Hv (x , u(x), v(x))

v ′(x) = −Hu(x , u(x), v(x)),

where v(x) = fξ(x , u(x), u′(x)) and H is the Legendre transform of f , i.e.,

H(x , u, v) = sup
ξ∈R
{ vξ − f (x , u, ξ) }

In classical mechanics f is called the Lagrangian and H the Hamiltonian.
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Direct methods

The direct methods were introduced by Hilbert, Lebesgue and Tonelli.

The idea is to split the problem into two pieces: existence of minimizers in
Sobolev spaces and then regularity of the solution.

For instance, the existence of minimizers of (P) in Sobolev spaces is
established in W 1,p(Ω). We can see that, sometimes, minimizers of (P)
are more regular than in a Sobolev space, they are in C 1 or even in C∞, if
the data Ω, f and u0 are sufficiently regular.

What is the idea of the direct method to show existence of minimizers in
Sobolev spaces?
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Existence by the direct methods

As in the finite dimensional case, we start by considering a minimizing
sequence {un} ⊂W 1,p(Ω), which means that

I (un)→ inf{I (u) | u = u0 on ∂Ω and u ∈W 1,p(Ω)} = min!, as n→∞.

The first step consists in showing that the sequence {un} is compact, i.e.,
that the sequence converges to an element u∗ ∈W 1,p(Ω). This, clearly,
depends on the topology that we have on W 1,p(Ω). The natural one is the
one induced by the norm, that we call strong convergence

un → u∗ in W 1,p(Ω).

However, it is, in general, not an easy matter to show that the sequence
converges in such a strong topology. It is often better to weaken the
notion of convergence and to consider the so called weak convergence

un → u∗ weakly in W 1,p(Ω).
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Direct methods

To obtain the weak convergence is much easier and it is enough, for
example if p > 1, to show (up to the extraction of a subsequence) that

‖un‖W 1,p(Ω) ≤ c ,

where c > 0 is a constant independent of n. Such an estimate follows, for
instance, if we impose a coercivity assumption on the function f of the
type

lim
|ξ|→∞

f (x , u, ξ)

|ξ|
= +∞ for all (x , u) ∈ Ω× R.

We observe that the Dirichlet integral, with f (x , u, ξ) = |ξ|2/2, satisfies
this hypothesis.
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Direct methods

The second step in the direct methods consists in showing that the
functional I is lower semicontinuous with respect to weak convergence,
namely

un → u∗ weakly in W 1,p(Ω) =⇒ I (u∗) ≤ lim inf
n

I (un).

This conclusion is true if

ξ 7→ f (x , u, ξ) is convex (x , u) ∈ Ω× R.

Since {un} was a minimizing sequence, we deduce that u∗ is indeed a
minimizer of (P).
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Regularity

All regularity results are obtained about solutions of the Euler-Lagrange
equation and therefore not only minimizers of (P).

We quote: Agmon, Bernstein, Calderon, De Giorgi, Douglis, E. Hopf,
Leray, Liechtenstein, Morrey, Moser, Nash, Nirenberg, Rado, Schauder,
Tonelli, Weyl and Zygmund.
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Direct methods

The following theorem was first established by De Giorgi, then simplified
by Moser and also proved, independently but at the same time, by Nash.

Theorem (1956/57) Let Ω ⊂ Rn be a bounded open set and
v ∈W 1,2(Ω) be a solution of

n∑
i ,j=1

∫
Ω

(
aij(x)vxi (x)ϕxj (x)

)
dx = 0 for all ϕ ∈ v ∈W 1,2

0 (Ω),

where aij ∈ L∞(Ω) are such that

n∑
i ,j=1

aij(x)ξiξj ≥ γ‖ξ‖2 for all ξ ∈ Rn, γ > 0.

Then there exists 0 < α < 1 such that v ∈ C 0,α(D) for every D ⊂ D ⊂ Ω.
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Equivalent problems

Let Ω ⊂ Rn be a bounded domain, M = {v ∈ C 1(Ω) | v = 0 on ∂Ω}.

(A) Variational problem∫
Ω

(
1

2

n∑
i=1

(Diu)2 − fu

)
dx → min!, u ∈ C 1(Ω), u = g on ∂Ω

(B) Generalized BVP∫
Ω

(
n∑

i=1

Diu Div − fv

)
dx = 0, for all v ∈ M, u = g on ∂Ω

(C) BVP

−∆u = f in Ω, u = g on ∂Ω (the Euler equation for (A))

(Jagiellonian University in Krakow) An Introduction 21 / 45



Equivalent problems

Theorem

Let f ∈ C (Ω), g ∈ C (∂Ω). Then

(a) for u ∈ C 2(Ω): (A), (B), and (C ) are equivalent,

(b) for u ∈ C 1(Ω): (A) and (B) are equivalent.

Proof: uses a typical reduction to extremal problem for real functions

Let

F (u) =

∫
Ω

(
1

2

n∑
i=1

(Diu)2 − fu

)
dx

and

ϕ(t) := F (u + tv) for t ∈ R, fixed v ∈ M, (ϕ depends on v).
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Equivalent problems

Let u ∈ C 2(Ω).

(A) =⇒ (B).

Let u solve (A), i.e., F (u) = min!, u = g on ∂Ω and u ∈ C 1(Ω).
If v ∈ M, t ∈ R, then u + tv ∈ C 1(Ω) and u + tv = g on ∂Ω.
Hence, the function ϕ has a minimum at t = 0, so ϕ′(0) = 0. This implies∫

Ω

(
n∑

i=1

Diu Div − fv

)
dx = 0, for all v ∈ M, u = g on ∂Ω,

which is equivalent to (B).
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Equivalent problems

(B) =⇒ (C ).

Let u solve (B), i.e.,∫
Ω

(
n∑

i=1

Diu Div − fv

)
dx = 0, for all v ∈ M.

By intergation by parts, we have∫
Ω

(−∆u − f ) v dx = 0, for all v ∈ M

and in particular for all v ∈ C∞0 (Ω). By the variational lemma, we get

−∆u − f = 0.

Since u = g on ∂Ω, u solves (C ).
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Equivalent problems

(C ) =⇒ (B).

We multiply
−∆u = f

by v ∈ M and integrate on Ω.
Integration by parts implies that u solves (B).
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Equivalent problems

(A)⇐⇒ (B).

Since ϕ : R→ R is quadratic, we have

“ϕ′(0) = 0” ⇐⇒ “ϕ has a minimum at t = 0”.

Hence, (A) is equivalent to “ϕ′(0) = 0 for all v ∈ M” which is equivalent
to (B).

Proof of (b):
(A) and (B) are equivalent, we have only used that u ∈ C 1(Ω).
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Variations

Remark:

δkF (u; v) := ϕ(k)(0)

is called kth variation of F at the point u in the direction v . In particular

δF (u; v) =

∫
Ω

(
n∑

i=1

Diu Div − fv

)
dx ,

δ2F (u; v) =

∫
Ω

n∑
i=1

(Div)2 dx .

Note: (B) ⇐⇒ the first variation vanishes: δF (u; v) = 0 for all v ∈ M.
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Variational inequalities
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Elliptic variational inequalities (EVIs)

Let X be a Hilbert space (extensions are possible) with 〈·, ·〉, A : X → X
be an operator, K ⊂ X , K 6= ∅, and j : X → R be a proper functional.

Elliptic variational inequality of the first kind:

(∗)

{
given f ∈ X , find u ∈ K such that

〈Au, v − u〉 ≥ 〈f , v − u〉 for all v ∈ K .

Elliptic variational inequality of the second kind:

(∗∗)

{
given f ∈ X , find u ∈ X such that

〈Au, v − u〉+ j(v)− j(u) ≥ 〈f , v − u〉 for all v ∈ X .

If we take j = IK , the indicator function of the set K , then the variational
inequality of second kind reduces to the variational inequality of the first
kind.
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Elliptic variational inequality (∗∗)

Theorem (Well posedness)

Let X be a Hilbert space, and A : X → X satisfy{
‖Au − Av‖ ≤ M‖u − v‖ (Lipschitz continuous M > 0),

〈Au − Av , u − v〉 ≥ m‖u − v‖2 (strongly monotone m > 0),

and j : X → R be a proper, convex and l.s.c., f ∈ X .

Then (∗∗) has a unique solution u ∈ X and

‖u1 − u2‖ ≤
1

m
‖f1 − f2‖, where ui = u(fi ), i = 1, 2.
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A particular case of (∗∗)

Corollary (Operator A = Id)

Let X be a Hilbert space, and j : X → R be proper, convex and l.s.c.
Then, for any f ∈ X , there exists a unique solution u ∈ X to

(∗ ∗ ∗) 〈u, v − u〉+ j(v)− j(u) ≥ 〈f , v − u〉 for all v ∈ X ,

and f 7→ u is Lipschitz continuous.

The unique solution u ∈ X to (∗ ∗ ∗) is called the proximal element of f
with respect to j .
The operator Proxj : X → X , Proxj(f ) = u is called the proximity
operator (J. Moreau, 1965). We know that

‖Proxj(f1)− Proxj(f2)‖ ≤ ‖f1 − f2‖ (non-expansive operator),

〈Proxj(f1)− Proxj(f2), f1 − f2〉 ≥ 0 (monotone operator).
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A particular case: the variational equality

Corollary (Lax-Milgram lemma)

Let X be a Hilbert space,

a : X × X → R is bilinear, bounded, coercive

(a(v , v) ≥ m‖v‖2 for all v ∈ X with m > 0),

and
l ∈ X ∗.

Then, there exists a unique solution u ∈ X to

a(u, v) = l(v) for all v ∈ X ,
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Equivalent formulation

Theorem (Energy formulation)

Let X be a Hilbert space,
a : X × X → R is bilinear, bounded, coercive, symmetric,
j : X → R be proper, convex and l.s.c.,
and l ∈ X ∗.

Then,
u ∈ X solves a(u, v − u) + j(v)− j(u) ≥ l(v − u) for all v ∈ X
⇐⇒
u ∈ X solves minv∈X J(v),

where {
J : X → R
J(v) := 1

2a(v , v) + j(v)− l(v) for v ∈ X .
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Another equivalent formulation

Theorem (Differentiable potential)

Let X be a Hilbert space,
a : X × X → R be bilinear, bounded, coercive, symmetric,
j : X → R be convex and l.s.c. and Gâteaux differentiable (finite),
and A : X → X is such that 〈Au, v〉 = a(u, v).

Then,
u ∈ X solves a(u, v − u) + j(v)− j(u) ≥ l(v − u) for all v ∈ X
⇐⇒
u ∈ X solves Au +∇j(u) = f .

Recall: Let ϕ : X → R, u ∈ X , X be a Hilbert space. Then ϕ is “Gâteaux
differentiable” at u if and only if

∃∇ϕ(u) ∈ X such that lim
t→0

ϕ(u + tv)− ϕ(u)

t
= 〈∇ϕ(u), v〉 for v ∈ X .
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Elliptic quasivariational inequality

Other classes of inequalities can be considered:

(1) find u ∈ X such that

a(u, v − u) + j(u, v)− j(u, u) ≥ 〈f , v − u〉 for all v ∈ X ,

(2) find u ∈ K (u) such that

a(u, v − u) ≥ 〈f , v − u〉 for all v ∈ K (u).
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Minty formulation

Theorem (Minty inequality, 1961)

Let X be a Hilbert space,
a : X × X → R be bilinear, bounded, positive,
K be nonempty, closed, convex.

Then, the following problems are equivalent

(1) find u ∈ K such that

a(u, v − u) ≥ 〈f , v − u〉 for all v ∈ K ,

(2) find u ∈ K such that

a(v , v − u) ≥ 〈f , v − u〉 for all v ∈ K .
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Generalized Minty formulation

Theorem (Minty inequality)

Let V be a reflexive Banach space, f ∈ V ∗

A : V → V ∗ be monotone and hemicontinuous,
K ⊂ V be nonempty, closed, convex.

Then, the following problems are equivalent

(1) find u ∈ K such that 〈Au − f , v − u〉 ≥ 0 for all v ∈ K ,

(2) find u ∈ K such that 〈Av − f , v − u〉 ≥ 0 for all v ∈ K .

For the proof (1) =⇒ (2), the monotonicity is needed.

For the proof (2) =⇒ (1), the hemicontinuity is needed.
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A saddle point formulation

Consider L : X × X → R defined by

L(v ,w) := a(v , v − w)− 〈f , v − w〉 for v , w ∈ X .

=⇒: if u ∈ K solves (1) (or equivalently the Minty form (2)), then

L(u, v) ≤ L(u, u) = 0 ≤ L(v , u) for all v ∈ K , (SP)

i.e., the pair (u, u) ∈ K × K is a saddle point of L on K × K .

⇐=: if (u, ũ) ∈ K × K is a saddle point of L on K × K , then u = ũ is a
solution to (1) (or (2)).

Conclusion:
u ∈ K solves (1) ⇐⇒ (u, u) is a saddle point of L on K × K .

Note that (SP) implies

L(u, u) = max
z∈K

L(u, z) and L(u, u) = min
w∈K

L(w , u).
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Penalty (penalization) method

Let X be a Hilbert space. Consider the EVI of first kind

(∗)

{
given f ∈ X , find u ∈ K such that

〈Au, v − u〉 ≥ 〈f , v − u〉 for all v ∈ K .

Goal:
J give another proof of existence and uniqueness to (∗),

J provide an approximation scheme to (∗),

J show the strong convergence result.
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Penalty method: hypotheses

For the EVI in (∗), we need the hypotheses.

A : X → X is strongly monotone and Lipschitz. H(A)

K ⊂ X is nonempty, closed, convex. H(K )
P : X → X is monotone and Lipschitz,

〈Pu, v − u〉 ≤ 0 for all u ∈ X , v ∈ K ,

Pu = 0 if and only of u ∈ K .

H(P)

Operator P in H(P) is called a penalty operator. Such operator always
exists for K as in H(K ).
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Penalty method: main result

Recall the variational inequality

find u ∈ K such that 〈Au, v − u〉 ≥ 〈f , v − u〉 for all v ∈ K . (∗)

Consider, for any λ > 0, the problem:

find uλ ∈ X such that Auλ +
1

λ
Puλ = f . (Pλ)

Theorem (Penalty)

Let X be a Hilbert space, H(A), H(K ), H(P) hold, and f ∈ X .
Then,

(a) for any λ > 0, there is the unique uλ ∈ X solution to (Pλ),
(b) there exists the unique solution u ∈ K solution to (∗),
(c) uλ → u in X , as λ→ 0.
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Penalty operator

Lemma (Projection lemma)

Let X be a Hilbert space, K ⊂ X be nonempty, closed, convex.
Then, for any f ∈ X , there is the unique u ∈ K such that

‖u − f ‖ = min
v∈K
‖v − f ‖.

The element u ∈ K is called the projection of f on K . The operator
πK : X → X is called the projection operator on K . We write u = πK (f ).
Moreover

u = πK (f ) ⇐⇒ u ∈ K , 〈u − f , v − u〉 ≥ 0 for all v ∈ K .

Next, we define P : X → X by P(u) = (I − πK )u for u ∈ X .

Then P is the penalty operator since it satisfies H(P).
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Stability with respect to (A, f ,K )

Theorem (Convergence)

Let X be a Hilbert space, A : X → X be strongly monotone and Lipschitz,
K ⊂ X be nonempty, closed, convex, f ∈ X .

For all n ∈ N, let An : X → X be strongly monotone and Lipschitz,
Kn ⊂ X be nonempty, closed, convex, fn ∈ X .
Assume

fn → f in X ,

Anvn → Av for any {vn} ⊂ Kn, vn → v in X , v ∈ K ,

Kn
M−→ K .

Let

u ∈ K be the unique solution to 〈Au − f , v − u〉 ≥ 0 for all v ∈ K ,

un ∈ Kn be the unique solution to 〈Anun − fn, v − un〉 ≥ 0 for all v ∈ Kn.

Then un → u in X .
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Convergence of sets, Mosco (1969)

Given a Banach space X , a sequence {Kn} of closed and convex sets in X ,
is said to converge to a closed and convex set K ⊂ X in the Mosco sense,
denoted by

Kn
M−→ K

as n→∞, iff
s- lim inf Kn = w - lim supKn = K ,

and iff

(m1) for any zn ∈ Kn, zn ⇀ z in X , up to a subsequence, we have z ∈ K ,

(m2) for any z ∈ K , there exists zn ∈ Kn with zn → z in X .

Given (X , τ), we recall the Kuratowski limits of sets {An} ⊂ X :

τ - lim inf An = {x ∈ X | x = τ - lim xn, xn ∈ An for all n ≥ 1},
τ - lim supAn = {x ∈ X | x = τ - lim xnk , xnk ∈ Ank , n1 < n2 < . . . < nk < . . .}.
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