

Analysis in Tatra Seminar for Students

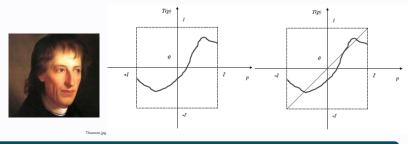
Małe Ciche, September 7 - 11, 2022

Twierdzenie Bolzano i co dalej? Twierdzenie Poincaré-Mirandy i jego uogólnienia

Wojciech Kryszewski

Some history

▲ Bernard Bolzano (1791-1848): a continuous function $f : K = [a, b] \rightarrow \mathbb{R}$ such that $f(a)f(b) \leq 0$ equals zero at some $\bar{x} \in K$.



Theorem (Bolzano Fixed Point)

If $f(a) \ge a$, $f(b) \le b$ (this holds \Leftrightarrow (INWD) $f(y) \in y + T_{\mathcal{K}}(y)$ for all $y \in \mathcal{K}$), then f has a fixed point $\bar{x} \in \mathcal{K}$, i.e. $f(\bar{x}) = \bar{x}$.

Corollary

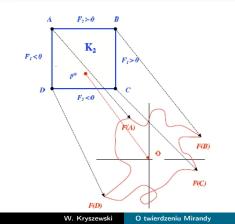
If $a \leq 0 \leq b$ and $f(a) \geq 0$, $f(b) \leq 0$ (this holds \Leftrightarrow (T) $f(y) \in T_{K}(y)$ for all $y \in K$), then f has a fixed point.

In 1883, Henri Poincaré announced (verbatim translation by F. Browder):

▲ Let $F_1, ..., F_n$ be continuous functions of n variables $x_1, ..., x_n$: the variable x_i is subjected to vary between the limits $-a_i$ and $+a_i$. Let us assume that:

- for $x_i = a_i$, F_i is constantly positive;
- for $x_i = -a_i$, F_i is constantly negative;

I say: there will exist a system of values of x where all f_i vanish.



< 注→

э

Poincaré concluded with a hint to proof in "an important theorem of Leopold Kronecker" from 1869. In 1886 Poincaré gave his famous paper on the homotopy invariance of the index: a basis of a modern proof; but the result was rapidly forgotten.

The result was implicitly rediscovered in 1911 by L. E. J. Brouwer who proved that: ▲ Under a continuous map of the unit cube into itself which displaces every point less then half unit, the image has an interior point.

Brouwer's fixed point theorem, n = 3, was proved by in 1909; an equivalent was established by P. Bohl in 1904; the proof for arbitrary n is due to J. H. Hadamard in 1910 (Kronecker's index). In 1912 Brouwer proved it with simplicial approximations and inceptions of degree theory.

A (1) A (2) A (2) A

▲ Rediscovered in 1940 by Sivio Cinquini (incorrect proof); ▲ Proved by Carlo Miranda in 1941 (showing the equivalence with the Brouwer fixed point theorem).

Theorem (Poincaré-Miranda)

Let $Q = \prod_{k=1}^{n} [a_k, b_k]$ be an n-dimensional cube and let

$$F_k^- := \{x \in Q \mid x_k = a_k\}, \ F_k^+ := \{x \in Q \mid x_k = b_k\}, \ k = 1, 2, ..., n.$$

Let $f = (f_1, ..., f_n) : Q \to \mathbb{R}^n$ be continuous and for all k = 1, ..., n

$$(-T) \quad f_k(x) \begin{cases} \leqslant 0 & \text{for every } x \in F_k^- \\ \geqslant 0 & \text{for every } x \in F_k^+ \end{cases} \quad \text{or} \quad (T) \quad f_k(x) \begin{cases} \geqslant 0 & \text{for every } x \in F_k^- \\ \leqslant 0 & \text{for every } x \in F_k^+. \end{cases}$$

Then there is $\bar{x} \in Q$ such that $f(\bar{x}) = 0$.

The assertion holds true if (-T) and (T) are "mixed": (mixT) if $x \in F_k^-$ and $y \in F_k^+$, then $f_k(x) \cdot f_k(y) \leq 0$.

The **proof** is simple. One shows that if $f(x) \neq 0$ on ∂Q , then f is homotopic to -I; hence deg $(f, \text{int } Q) = (-1)^n \neq 0$ (last proof: M Vrahatis 1999 in PAMS)

Corollary (Zgliczyński (2001))

If $0 \in Q$ and for all k = 1, ..., n, (T) holds, i.e.,

(T)
$$f_k(x) \ge 0$$
 for $x \in F_k^-$ and $f_k(y) \le 0$ for $y \in F_k^+$,

then there is $x^* \in Q$ such that $f(x^*) = x^*$.

Condition (*T*) cannot be replaced by (-T) and the result is not true when $0 \notin Q$.

Theorem (Ghezzo (1947), Schäfer (2007), Mawhin (2013))

(1) Let $\mathbb{Q} = \{x \in \ell^2 \mid |x_k| \leq \frac{1}{k}\}$ be the Hilbert cube and $f : \mathbb{Q} \to \ell^2$ and such that for all $k \in \mathbb{N}$

(mixT)
$$f_k(x_1,...,x_{k-1},-\frac{1}{k},x_{k+1},...) \cdot f_k(x_1,...,x_{k-1},\frac{1}{k},x_{k+1},...) \leq 0,$$

then f has a zero.

(2) If for all $k \in \mathbb{N}$,

$$(\mathbf{T}) \qquad f_k(x_1,...,x_{k-1},-\frac{1}{k},x_{k+1},...) \ge 0, \ f_k(x_1,...,x_{k-1},\frac{1}{k},x_{k+1},...) \le 0,$$

then f has a fixed point and a zero.

イロト イヨト イヨト イヨト

э

Corollary (W. Hurewicz)

Assume that for any k = 1, ..., n, there are a nonempty closed set $B_k \subset Q$, open disjoint sets $U_k^-, U_k^+ \subset Q \setminus B_k$ such that:

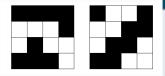
$$Q \setminus B_k = U_k^- \cup U_k^+$$

and

$$F_k^- \subset U_k^-, \ F_k^+ \subset U_k^+.$$

Then $\bigcap_{k=1}^{n} B_k \neq \emptyset$ (there is ℓ^2 version, too).

For proof: let $f_k(x) = \eta_k(x)d(x, B_k)$, where $\eta_k = -1$ on U_k , +1 on U^k and 0 on B_k , k = 1, ..., n.



Theorem (H. Steinhaus)

Consider an $n \times n$ chessboard and place mines on any set of squares. Then: either a king can move from the left to the right omitting mines or a rook can move from the bottom to the top using only mined squares.

イロト イヨト イヨト イヨト

Deimling Theorem

Theorem (Browder, Halpern-Benjamin, Deimling (1989))

Let E be a Banach space. If $K \subset E$ is closed convex, $f: K \to E$ is compact and for any $y \in K$

(INWD)
$$f(y) \in y + T_K(y),$$

where

$$T_{\mathcal{K}}(y) = \bigcup_{h>0} \frac{\mathcal{K}-y}{h},$$

, then f has a fixed point.

For (a simple) **proof** assume that *E* is a Hilbert space. Let $r : E \to K$ be a (metric) retraction i.e., ||x - r(x)|| = d(x, K), $x \in K$. Let $g = f \circ r$; then $g : E \to E$ is compact and, by the Schauder theorem, has a fixed point $\bar{x} \in E$

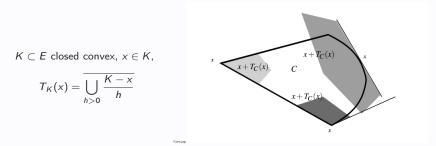
$$\bar{x} = g(\bar{x}) = f(\bar{y})$$
 where $\bar{y} = r(\bar{x})$.

For each $z \in K$, $\langle \bar{x} - \bar{y}, z - \bar{y} \rangle \leqslant 0$, i.e.

$$K - \bar{y} \subset \{ v \in E \mid \langle \bar{x} - \bar{y}, v \rangle \leq 0 \}.$$

Hence if $v \in T_{\mathcal{K}}(\bar{y})$ then $\langle \bar{x} - \bar{y}, v \rangle \leq 0$.

Thus $v = \bar{x} - \bar{y} = f(\bar{y}) - \bar{y} \in T_{\mathcal{K}}(\bar{y}) \implies \|\bar{x} - \bar{y}\|^2 = 0.$



In fact it is a wedge, i.e. convex and if $v \in T_{\mathcal{K}}(x)$, $\lambda \ge 0$, then $\lambda v \in T_{\mathcal{K}}(x)$.

• If $x \in \text{int } K$, then $T_K(x) = E$.

• $v \in T_K(x)$ if and only if there are sequences (v_n) , (h_n) such that $v = \lim_{n \to \infty} v_n$, $h_n \searrow 0$ and $x + h_n v_n \in K$.

Example

(1) If K = D(0, R) (a closed ball) in a Hilbert space E, then for $x \in H$ with ||x|| = R $T_K(x) = \{v \in E \mid \langle x, v \rangle \leq 0\}.$ (2) If $Q = \prod_{k=1}^n [a_k, b_k]$ is a cube and $x \in \partial Q$, then $v = (v_1, ..., v_n) \in T_Q(x) \iff \forall k = 1, ..., n$ v_k is $\begin{cases} \ge 0 & \text{if } x_k = a_k \\ \le 0 & \text{if } x_k = b_k. \end{cases}$ (3) If K = [a, b], then $T_K(y) = \mathbb{R}$ if $y \in (a, b)$, $T_K(a) = [0, +\infty)$, $T_K(b) = (-\infty, 0]$.

(4) (Aubin-Frankowska) Let $D \subset \mathbb{R}^n$ closed convex. If $K = \{u \in L^p(\Omega, \mathbb{R}^n) \mid u(x) \in D \text{ for a.a } x \in \Omega\}, u \in K$, then K is closed and convex in L^p and

 $v \in T_{\mathcal{K}}(u) \iff v(x) \in T_D(u(x))$ for a.a. $x \in \Omega$.

Corollary

A map $f : Q \to \mathbb{R}^n$ \blacktriangle satisfies (-T) of the Miranda theorem $\iff \forall x \in K \quad -f(x) \in T_Q(x)$. \blacktriangle satisfies (T) of the Miranda theorem $\iff \forall x \in K \quad f(x) \in T_Q(x)$.

▲ A map $f : \mathbb{Q} \to \ell^2$ satisfies the assumption of the infinite dimensional Miranda theorem $\iff \forall x \in \mathbb{Q}$ $f(x) \in T_{\mathbb{Q}}(x)$.

Theorem (Halpern (1965), Halpern-Bergman (1968), Browder (1968))

• If $K \subset \mathbb{E}$ is compact convex, $f : K \to \mathbb{E}$ is continuous and tangent, i.e.

 $\forall x \in K \ f(x) \in T_K(x),$

then f has a zero.

• If f is inward, i.e., $\forall x \in K$ $f(x) \in x + T_K(x)$ or outward, i.e. $\forall x \in K$ $f(x) \in x - T_K(x)$, then f has a fixed point.

Remark

If $0 \in K$, then $T_K(x) \subset x + T_K(x)$. Hence tangency (condition (*T*) in Miranda) implies inwardness and, hence, fixed points (and (-T) does not).

イロト イヨト イヨト ・

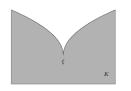
We are going to formulate results that generalize the above "Miranda" theorems.

Definition (WK (1997))

A closed set $K \subset \mathbb{E}$ is an \mathcal{L} -retract if there is a neighborhood retraction $r : U \to K$ such that $||r(x) - x|| \leq Ld(x, K)$ for some $L \geq 1$.

Example

K is an \mathcal{L} -retract if: (1) K is closed convex (with $L = 1 + \varepsilon$; with L = 1 if \mathbb{E} is Hilbert); (2) K is epi-Lipschitz (locally the epigraph of a Lipschitz functional); (3) K is locally convex closed subset of a Riemannian manifold.



The set K is not an L-retract, because of the "cusp" at ξ .

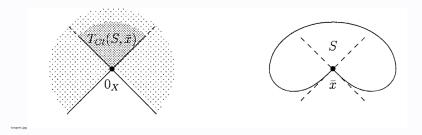
→

Definition (Clarke)

Let $K \subset \mathbb{E}$ be closed and $x \in K$. The Clarke tangent cone

$$C_{\mathcal{K}}(x) := \{ v \in \mathbb{E} \mid \lim_{h \to 0^+, y \to x, y \in \mathcal{K}} \frac{d(y + hv, \mathcal{K})}{h} = 0 \}.$$

• $v \in C_{\mathcal{K}}(x) \iff \text{if } x_n \to x, \ h_n \to 0^+ \Rightarrow \exists v_n \to v \text{ such that } x_n + h_n v_n \in \mathcal{K}.$ • If \mathcal{K} is closed convex then $C_{\mathcal{K}}(x) = T_{\mathcal{K}}(x).$



э

Theorem (H. Ben-El-Mechaiekh, WK (TAMS 1999))

Let K be a compact \mathcal{L} -retract, the Euler characteristic $\chi(K) \neq 0$. Let $f : K \to \mathbb{E}$ be continuous and tangent:

 $\forall x \in K \ f(x) \in C_K(x),$

then there is $\bar{x} \in K$ with $f(\bar{x}) = 0$ (fixed point version is true, too).

Definition

If $K \subset \mathbb{E}$ closed, $x \in K$, then the normal cone to K at x

$$N_{\mathcal{K}}(x) := \{ p \in \mathbb{E}^* \mid \forall v \in C_{\mathcal{K}}(x) \ \langle p, v \rangle \leqslant 0 \}.$$

▲ If K is closed convex, then

$$N_{\mathcal{K}}(x) := \{ p \in \mathbb{E}^* \mid \max_{y \in \mathcal{K}} \langle p, y \rangle = \langle p, x \rangle \} = \{ p \in \mathbb{E}^* \mid \forall v \in T_{\mathcal{K}}(x) \ \langle p, v \rangle \leq 0 \}.$$

Theorem (A. Ćwiszewski, WK (NA 2005))

If K is as above, $\Phi: K \to \mathbb{E}^*$ is continuous (typically $\Phi(x) = \nabla F$), then there is a generalized critical point, i.e., $\bar{x} \in K$ such that

$$\Phi(\bar{x}) \in N_K(\bar{x}).$$

Relaxing compactness of the domain requires compactness in the mapping.

Theorem (K. Deimling (NA 1992))

Let $K \subset \mathbb{E}$ be closed bounded convex, $F : K \multimap \mathbb{E}$ is continuous and condensing w.r.t. Hausdorff (or Kuratowski) measure of noncompactness. If F is inward, i.e, $F(x) \in x + T_K(x)$) for $x \in K$, then F has a fixed point.

Thus far we considered equations of the form

$$f(x) = 0$$
 or $F(x) = x$, $x \in K$,

i.e., constrained to some closed $K \subset \mathbb{E}$, assuming that $f, F : K \to \mathbb{E}$ is continuous compact and subject to additional conditions (tangency, inwardness).

Now we turn to problems of the form

$$0 \in Ax + F(x), x \in K,$$

where $F : K \to \mathbb{E}$ is continuous, $A : D(A) \to \mathbb{E}$ is a densely defined ω -dissipative operator for some $\omega \in \mathbb{R}$, i.e.: $||\lambda x - Ax|| \ge (\lambda - \omega)||x||$ for $x \in D(A)$, $\lambda > \omega$ and $R(\lambda_0 I - A) = \mathbb{E}$ for some $\lambda_0 > \omega$ ($\Leftrightarrow \varrho(A) \cap (\omega, \infty) \neq \emptyset$).

▲ Equivalently (for linear) A is the generator of a C₀-semigroup $\{S_A(t)\}_{t \ge 0}$ of bounded linear operators on \mathbb{E} , or • $A = \partial \varphi$, where \mathbb{E} is Hilbert and $\varphi : \mathbb{E} \to \mathbb{R}$ is convex lower semicontinuous.

▲ Constrained elliptic BVP

$$(CEP) \qquad -\Delta u = f(x, u, \nabla u), \ x \in \Omega, \ u(x) \in \mathcal{K}; \ u|_{\partial\Omega} = 0 \ \left(or \ \frac{\partial u}{\partial \nu} \right|_{\partial\Omega} = 0 \right)$$

and its (strong) solutions.

▲ Constrained parabolic initial BVP

 $(CPP) \quad \dot{u}(t) - \Delta u = f(t, x, u, \nabla u), \quad t \in [0, T], \ u(0, \cdot) = u_0, \ u|_{\partial\Omega} = 0, \ u(t, x) \in \mathcal{K}$

and its mild (or strong) solutions and periodic trajectories.

Here:

- $f: \Omega \times \mathbb{R}^N \times \mathbb{R}^{NM} \to \mathbb{R}^N$ (or $\varphi: [0, T] \times \Omega \times \mathbb{R}^N \times \mathbb{R}^{NM} \to \mathbb{R}^N$) is continuous;
- $\Omega \subset \mathbb{R}^M$ is a bounded domain in \mathbb{R}^M with smooth boundary $\partial \Omega$;
- $\mathcal{K} \subset \mathbb{R}^N$ is closed (convex) set of state constraints.

- < ⊒ →

Setting

• For $u = (u_1, ..., u_N) \in D(A) := H^1_0(\Omega) \cap H^2(\Omega, \mathbb{R}^N)$

$$Au = (\Delta u_1, ..., \Delta u_N),$$

where Δ is the usual Laplacian with Neumann (or Dirichlet) boundary conditions.

•
$$\begin{split} \mathbb{E}_0 &= H^1(\Omega, \mathbb{R}^N), \\ \mathcal{K}_0 &:= \{ u \in \mathbb{E} \mid u(x) \in \mathcal{K} \text{ a.e. on } \Omega \}, \end{split}$$

$$\begin{split} \mathbb{E} &= L^2(\Omega, \mathbb{R}^N), \\ \mathcal{K} &:= \{ u \in \mathbb{E} \mid u(x) \in \mathcal{K} \text{ a.e. on } \Omega \}; \end{split}$$

• (for (CEP))
$$F(u) := f(\cdot, u(\cdot), \nabla u(\cdot)), \quad u \in E_0;$$

• (for (CPP)) $F(t, u) := f(t, \cdot, u(\cdot), \nabla (\cdot)), \quad t \in [0, T], \quad u \in \mathbb{E}_0.$

Abstract problem

$$0 = Au + F(u), \quad u \in K \cap D(A),$$

$$u' = Au + F(t, u), \quad u(0) = u_0, \quad u(t) \in K \cap D(A) \text{ for } t \in [0, T].$$

where

▲ $A: D(A) \to \mathbb{E}$ is a densely defined (in \mathbb{E}) linear operator,

$$D(A) \subset \mathbb{E}_0 \stackrel{j}{\hookrightarrow} \mathbb{E};$$

 $\blacktriangle \quad K_0 \subset \mathbb{E}_0, \ K \subset \mathbb{E} \text{ are closed sets}, \ j(K_0) \subset K \ ;$

• $F: K_0 \to \mathbb{E}$ is continuous.

• For any h > 0, $h^{-1} \in \varrho(A)$, the resolvent

$$J_h := (I - hA)^{-1}$$

is well-defined.

Theorem (AĆ, WK (JDE 2011))

Assume that a closed $K \subset \mathbb{E}$ is a bounded \mathcal{L} -retract such that: (1) The resolvent invariance, i.e. $J_h(K) \subset K$ for all h > 0; (2) $F : K \to \mathbb{E}$ is continuous, tangent to K, i.e., $F(u) \in T_K(u)$, $u \in K$; (3) A is ω -dissipative, $\varrho(A) \cap (\omega, \infty) \neq \emptyset$ and $D(A) \hookrightarrow \mathbb{E}$. Then: (i) the Euler characteristic $\chi(K)$ is well-defined; (ii) if $\chi(K) \neq 0$ and K is bounded, then there is a solution to (CEP). i.e., there is $\overline{u} \in K \cap D(A)$ such that $0 \in Au + F(u)$.

Remark

(a) If (1), then K is semigroup invariant, i.e., $S_A(t)K \subset K$; if K is convex ten these conditions are equivalent.

(b) If \mathcal{K} is convex, then it holds when A has $(\omega, +\infty) \subset \varrho(A)$ and $D(A) \hookrightarrow \subseteq \mathbb{E}$.

イロト イヨト イヨト ・

э

Theorem (J. Siemianowski, WK (JFA to appear))

Suppose $K_0 \subset \mathbb{E}_0$ and $K \subset \mathbb{E}$ are closed convex bounded, $j(K_0) \subset K$ and: • A is densely defined, $(\omega, +\infty) \subset \varrho(A)$ for some $\omega \in \mathbb{R}$, $D(A) \hookrightarrow \mathbb{E}_0$; • $J_h(K) \subset K_0$ for h > 0 with $h\omega < 1$; • $F : K_0 \to \mathbb{E}$ is continuous, bounded and $F(u) \in T_K(j(u))$ for $u \in K_0$, then there is $\bar{u} \in D(A) \cap K_0$ with $0 = A\bar{u} + F(\bar{u})$.

In the proof: one takes $r : \mathbb{E} \to K$ (exists) such that

 $\|r(x)-x\|\leqslant 2d(x;K).$

For small h > 0, with $h\omega < 1$, the fixed point problem

 $u = J_h(r(j(u) + hF(u))), u \in K,$

has a solution $u_h \in D(A) \cap K$, i.e., $\xi_h := u_h - hAu_h = r(j(u_h) + hF(u_h)) = r(w_h)$. One shows that

$$Au_h + F(u_h) \in T_K(j(u_h)), \ w_h - r(w_h) = w_h - \xi_h = h(Au_h + F(u_h)).$$

The left expression is "perpendicular" to K, the right one is tangent: hence both are almost zero; passing $h \to 0$ yields the required $\bar{u} \in K \cap D(A)$.

(日本) (日本) (日本)

• Let $f : [0, T] \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ satisfy Carathéodory conditions and sublinear growth.

• Let $K \subset \mathbb{R}^N$ be closed convex and bounded subset. We assume that -f is tangent to K with respect to the second variable, i.e.

 $-f(x, u, v) \in T_{K}(u)$ for every $u \in K$, $x \in [0, T]$, $v \in \mathbb{R}^{N}$.

Theorem (JS, WK (2015))

The following Neumann bvp:

$$\begin{cases} \ddot{u}(x) = f(x, u(x), \dot{u}(x)) \text{ a.e. on } [0, T], \\ \dot{u}(0) = \dot{u}(R) = 0. \end{cases}$$

(1)

(1) マン・ション (1) マン・

has a solution in $u \in W^{2,1}([0,T],\mathbb{R}^N)$ such that $u(x) \in K$ for all $x \in [0,T]$.

Let $\mathcal{K} \subset \mathbb{R}^N$ is closed convex and bounded.

- Let $f: \Omega \times \mathcal{K} \times (\mathbb{R}^M)^N \to \mathbb{R}^N$ such that:
- $f(\cdot, u, v) : \Omega \to \mathbb{R}^N$ is measurable; $f(x, \cdot, \cdot) : \mathcal{K} \times (\mathbb{R}^M)^N \to \mathbb{R}^N$ is continuous;
- There is $b \in L^2(\Omega)$ such that $||f(x, u, v)|| \leq b(x)$ for a. e. $x \in \Omega$ and all $u \in \mathcal{K}, v \in (\mathbb{R}^M)^N$.
- $f(x, u, v) \in T_{\mathcal{K}}(u)$ for a.a. $x \in \Omega$ and all $u \in K, v \in (\mathbb{R}^M)N$.
- Consider the system of N of nonlinear Poisson equations with Neumann BVP:

$$\begin{cases} -\Delta u(x) = f(x, u(x), \nabla u(x)) & \text{in } \Omega, \\ \frac{\partial u_1(x)}{\partial n} = \dots = \frac{\partial u_N(x)}{\partial n} = 0 & \text{on } \partial \Omega, \end{cases}$$
(2)

where $\nabla u = (\nabla u_1, \dots, \nabla u_N)$, $\frac{\partial u_i}{\partial n}$ denotes the outward normal derivative of u_i .

Theorem (JS, WK (2015))

There is a solution
$$u \in H^2(\Omega, \mathbb{R}^N)$$
 such that $\frac{\partial u}{\partial n} = 0$ in the sense of trace.

Recall that $K_0 = \{ u \in \mathbb{E}_0 = H^1(\Omega, \mathbb{R}^N) \mid u(x) \in \mathcal{K} \}$, $\mathcal{K} = \{ u \in \mathbb{E} = L^2(\omega, \mathbb{R}^N) \mid u(x) \in \mathcal{K} \}$. $A = \Delta$ with Neumann boundary condition.

In particular one has to show that for each h > 0,

$$(I - h\Delta)^{-1}(K) \subset K_0,$$

i.e. sort of a maximum principle:

Theorem (JS, WK (2015))

If $f \in K$, h > 0 and $u \in D(\Delta)$ such that

$$u - h\Delta u = f$$
,

then $u \in K_0$.

Theorem (Bishop-Phelps (1978))

If $K \subset \mathbb{E}$, \mathbb{E} separable, is closed convex, then it is the intersection of a countable collection of closed halfspaces that support it.

The consequence of the modified separation theorem.

< ∃ > < ∃ >

The topological degree (the homotopy invariant) responsible for the existence of zeros of:

(1) (Miranda situation) $\varphi : K \to \mathbb{E}$, where $K \subset \mathbb{E}$ is a locally compact \mathcal{L} -retract, φ is weakly tangent to K, usc with closed convex values (or strongly tangent to K and admissible);

(2) (Deimling situation) $I - \varphi : K \multimap \mathbb{E}$, where $K \subset \mathbb{E}$ is closed convex, φ is weakly inward to K usc, condensing with convex compact values;

(3) (Elliptic situation) $A + F : K \to \mathbb{E}$, where K is an \mathcal{L} -retract, A generates a compact semigroup, F is weakly tangent to K, H-usc with weakly compact convex values.

• The Conley index approach for (*CEP*) with $\Omega = \mathbb{R}^N$: no compactness of the semigroup generated by the Schrödinger operator $-\Delta + V$.

- 本間 と 本臣 と 本臣 と 二臣

Constrained parabolic problems

We consider the problem of the form

$$\dot{u} = Au + F(t, u)$$

and look for a periodic mild solution u, i.e. a continuous $u : [0, T] \rightarrow \mathbb{E}$ such that u(0) = u(T)

(CPP)
$$u(t) = S_A(t)u(0) + \int_0^t S_A(t-s)w(s) \, ds,$$

where $w(s) \in F(s, u(s))$ for a.a. $s \in [0, T]$.

Theorem (JS, WK (2015))

(1) If K is closed convex and bounded, then (CPP) has a periodic solution.

(2) Suppose K is closed convex, $0 \in K$, F is bounded and spectral bound

$$s(A) := {\operatorname{Re} \lambda \mid \lambda \in \sigma(A)} < 0$$

(as for Δ), then (CPP) has a periodic solution.

Hopf bifurcation..., periodic solutions without boundedness..., multiplicity of solutions... $< \Box \succ < \overline{\Box} \succ < \overline{\Box} \succ < \overline{\Xi} \succ < \overline{\Xi} \rightarrow < \overline{\Xi} = \circ \circ \circ \circ \circ$

1. H. Ben-El-Mechaiekh, W. Kryszewski, *Equilibria of set-valued maps on nonconvex domains*, Trans. Am. Math. Soc., Vol. 349, 1997, 4159-4179.

2. A. Ćwiszewski, WK, Equilibria of set-valued maps: a variational approach, Nonlinear Anal., Vol. 48, 2002, 707-749.

3. WK, On the existence of equilibria and fixed points of maps under constraints, Handbook of Topological Fixed Point Theory (ed. by R. F. Brown [et al.]), Springer, 2005, 783-866 (huge bibliography there).

4. A. Ćwiszewski, WK, *Homotopy invariants for tangent vector fields on closed sets*, Nonlinear Anal., Vol. 65 no. 1, 2006, 175-209.

5. A. Ćwiszewski, WK, *The constrained degree and fixed-point index theory for set-valued maps*, Nonlinear Anal., Vol. 64 no. 12, 2006, 2643-2664.

6. A. Ćwiszewski, WK, Constrained topological degree and positive solutions of fully nonlinear boundary value problems, J. Differ. Eq., Vol. 247 no. 8, 2009, 2235-2269.

イロト イヨト イヨト ・

7. A. Fonda, P. Gidoni, *Generalizing the Poincaré-Miranda theorem: the avoiding cones condition*; preprint.

8. J. Mawhin, Variations on Poincaré-Miranda theorem, Adv. Nonlinear Studies 13 (2013), 209-217.

9. U. Schafer, A fixed point theorem based on Miranda, Fixed Point Theory and Appl. (2007)

10. WK, J. Siemianowski, *The constrained Krasnosels'kii formula for parabolic differential inclusions*, ArXiv 2015

THANK YOU "Tangency is everywhere"

- E - E

This would be all (the survey paper of Mawhin (2013); tens of new proofs, rediscoveries, applications and a recent preprint Fonda-Gidoni (2015)) if not for.... WHAT FOLLOWS.

-∢ ≣ ▶

э

• Let $u \in H^1(\Omega)$. We say that $\Delta u \in L^2(\Omega)$ is there is $f \in L^2(\Omega)$ such that

$$\int_{\Omega}
abla u \cdot
abla v = -\int_{\Omega} f v$$

for all $v \in C_0^{\infty}(\Omega)$. In this case we let $\Delta u := f$ (correct definition).

• Let $u \in H^1(\Omega)$ and $\Delta \in L^2(\Omega)$. We say that $\frac{\partial u}{\partial \nu} \in L^2(\Gamma)$ if there is $b \in L^2(\Gamma)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} \Delta u v = \int_{\Gamma} b v|_{\Gamma}$$

for all $v \in H^1(\Omega)$. In this case we let $\frac{\partial u}{\partial \nu} := b$ (correct definition).

These definitions are such that the Green Formula

$$\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} \Delta u v = \int_{\Gamma} \frac{\partial u}{\partial \nu} v|_{\Gamma}$$

(which is "clasically" valid for $u, v \in C^2(\overline{\Omega})$) holds for all $v \in H^1(\Omega)$, whenever $u \in H^1(\Omega)$, $\Delta u \in L^2(\Omega)$ and $\frac{\partial u}{\partial \nu} \in L^2(\Omega)$.

Operators – Lions construction

• Let $(\mathbb{H}, \langle \cdot, \cdot \rangle_{\mathbb{H}})$ be a Hilbert space, $(V, \|\cdot\|)$ a Banach space such that $j : V \hookrightarrow \mathbb{H}$ $(V \subset \mathbb{H} \text{ and } j : V \to \mathbb{H}, j(v) := v \text{ is continuous})$ and V is dense in \mathbb{H} .

Fact (Gelfand evolution triple)

After the identification $\mathbb{H} = \mathbb{H}^*$ (via the Riesz theorem), $i : \mathbb{H} \hookrightarrow V^*$ ($\langle v, i(h) \rangle := \langle v, h \rangle_{\mathbb{H}}$, $h \in \mathbb{H}$, $v \in V$); if V is reflexive, then \mathbb{H}^* is dense in V^* , i.e., $V \hookrightarrow \mathbb{H} \hookrightarrow V^*$.

• [Dirichlet form] Let a bilinear form $a: V \times V \to \mathbb{R}$ be symmetric, continuous and elliptic, i.e.,

$$a(v,v) + \omega \|v\|_{\mathbb{H}}^2 \ge \alpha \|v\|_V^2,$$

for all $v \in V$ and some $\omega \in \mathbb{R}$ and $\alpha > 0$.

• Define $\mathcal{A}: \mathcal{V} \to \mathcal{V}^*$ by

$$\mathcal{A}v(w) := a(v, w), v, w \in V.$$

• Define $A: D(A) \to \mathbb{H}$, $D(A) \subset \mathbb{H}$, by

$$x \in D(A) ext{ and } y = Ax \iff x \in V ext{ and } a(x,v) = \langle y,v
angle_{\mathbb{H}} \ orall v \in V$$

In other words $A = A|_{D(A)}$. We say that A, A are generated by the form a.

Theorem

Let $V \hookrightarrow \mathbb{H} \hookrightarrow V^*$ be a Gelfand triple, $a : V \times V \to \mathbb{R}$ a Dirichlet form (i.e., symmetric, continuous and elliptic). If $\mathcal{A} : V \to V^*$ and $\mathcal{A} : D(\mathcal{A}) \to \mathbb{H}$ are generated by a, then:

(1) A is symmetric (i.e., $\langle w, Av \rangle = \langle v, Aw \rangle$), linear and bounded.

(2) $D(A) \subset V$ is a dense (linear) subspace in \mathbb{H} , A is self adjoint linear and closed and, in general unbounded, but $\langle Au, u \rangle_{\mathbb{H}} \ge -\omega ||u||_{\mathbb{H}}^2$;

(3) -A is the generator of an analytic C_0 semigroup $\{S_A(t); \mathbb{H} \circlearrowleft\}_{t \ge 0}$ such that

$$\|S_A(t)\|_{\mathbb{H}}\leqslant e^{\omega t}, \ t\geqslant 0.$$

(4) The resolvent set $\varrho(A) \supset (\omega, +\infty)$, $\|(\lambda I + A)^{-1}\|_{\mathcal{L}(\mathbb{H})} < \frac{1}{\lambda - \omega}$ for $\lambda > \omega$. (5) If $\omega = 0$, i.e., a is coercive, then $\varrho(-A) \supset (-\gamma, +\infty)$ for some $\gamma > 0$; in particular $A^{-1} : \mathbb{H} \to D(A)$ is well-defined and continuous with $\|A^{-1}\| \leq \frac{1}{\gamma}$.

(6) A has compact resolvents \iff the embedding $V \hookrightarrow \mathbb{H}$ is compact; hence the semigroup $\{S_A(t)\}$ is compact, i.e., $S_A(t)$ is compact for all t > 0. The spectrum $\sigma(A)$ consists then of eigenvalues only.

(7) If $V \hookrightarrow \mathbb{H}$ is compact and \mathbb{H} is separable, then \mathbb{H} basis $(e_n)_{n=1}^{\infty}$ such that

$$Ae_n = \lambda_n e_n$$
, where for $n \in \mathbb{N}$ $\lambda_n \leq \lambda_{n+1}$, $\lim_{n \to \infty} \lambda_n = +\infty$.

One has $\lambda_n = \sup\{\min_{u \in W_1} a(u, u) \mid W \subset V, \dim V/W = n-1\}$ here $W \subset V$ is a closed subspace and $W_1 := \{u \in W \mid ||u||_{\mathbb{H}} = 1\}.$

イロン 不得 とくほ とくほ とう