
Analysis in Tatra
Seminar for Students

Małe Ciche, September 7 - 11, 2022

Twierdzenie Bolzano i co dalej?
Twierdzenie Poincaré-Mirandy i jego uogólnienia

Wojciech Kryszewski

W. Kryszewski O twierdzeniu Mirandy



Some history

N Bernard Bolzano (1791-1848): a continuous function f : K = [a, b]→ R such that

f (a)f (b) 6 0 equals zero at some x̄ ∈ K .
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Theorem (Bolzano Fixed Point)

If f (a) > a, f (b) 6 b
(
this holds ⇔ (INWD) f (y) ∈ y + TK (y) for all y ∈ K

)
, then

f has a fixed point x̄ ∈ K , i.e. f (x̄) = x̄ .

Corollary

If a 6 0 6 b and f (a) > 0, f (b) 6 0
(
this holds ⇔ (T ) f (y) ∈ TK (y) for all y ∈ K

)
,

then f has a fixed point.
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In 1883, Henri Poincaré announced (verbatim translation by
F. Browder):
N Let F1, ...,Fn be continuous functions of n variables
x1, ..., xn: the variable xi is subjected to vary between the
limits −ai and +ai . Let us assume that:
• for xi = ai , Fi is constantly positive;
• for xi = −ai , Fi is constantly negative;
I say: there will exist a system of values of x where all fi
vanish.
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Poincaré concluded with a hint to proof in „an important theorem of Leopold

Kronecker” from 1869. In 1886 Poincaré gave his famous paper on the homotopy

invariance of the index: a basis of a modern proof; but the result was rapidly forgotten.

The result was implicitly rediscovered in 1911 by L. E. J. Brouwer who proved that:
N Under a continuous map of the unit cube into itself which displaces every point less
then half unit, the image has an interior point.

Brouwer’s fixed point theorem, n = 3, was proved by in 1909; an equivalent was
established by P. Bohl in 1904; the proof for arbitrary n is due to J. H. Hadamard in
1910 (Kronecker’s index). In 1912 Brouwer proved it with simplicial approximations
and inceptions of degree theory.
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N Rediscovered in 1940 by Sivio Cinquini (incorrect proof);
N Proved by Carlo Miranda in 1941 (showing the
equivalence with the Brouwer fixed point theorem).

Theorem (Poincaré-Miranda)

Let Q = Πn
k=1[ak , bk ] be an n-dimensional cube and let

F−k := {x ∈ Q | xk = ak}, F+
k := {x ∈ Q | xk = bk}, k = 1, 2, ..., n.

Let f = (f1, ..., fn) : Q → Rn be continuous and for all k = 1, ..., n

(−T ) fk (x)

{
6 0 for every x ∈ F−k
> 0 for every x ∈ F+

k

or (T ) fk (x)

{
> 0 for every x ∈ F−k
6 0 for every x ∈ F+

k .

Then there is x̄ ∈ Q such that f (x̄) = 0.

The assertion holds true if (−T ) and (T ) are „mixed”:

(mixT ) if x ∈ F−k and y ∈ F+
k , then fk (x) · fk (y) 6 0.

The proof is simple. One shows that if f (x) 6= 0 on ∂Q, then f is homotopic to −I ;
hence deg(f , intQ) = (−1)n 6= 0 (last proof: M Vrahatis 1999 in PAMS)
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Corollary (Zgliczyński (2001))

If 0 ∈ Q and for all k = 1, ..., n, (T ) holds, i.e.,

(T ) fk (x) > 0 for x ∈ F−k and fk (y) 6 0 for y ∈ F+
k ,

then there is x∗ ∈ Q such that f (x∗) = x∗.

Condition (T ) cannot be replaced by (−T ) and the result is not true when 0 6∈ Q.

Theorem (Ghezzo (1947), Schäfer (2007), Mawhin (2013) )

(1) Let Q = {x ∈ `2 | |xk | 6 1
k
} be the Hilbert cube and f : Q→ `2 and such that for

all k ∈ N

(mixT ) fk (x1, ..., xk−1,−
1
k
, xk+1, ...) · fk (x1, ..., xk−1,

1
k
, xk+1, ...) 6 0,

then f has a zero.

(2) If for all k ∈ N,

(T ) fk (x1, ..., xk−1,−
1
k
, xk+1, ...) > 0, fk (x1, ..., xk−1,

1
k
, xk+1, ...) 6 0,

then f has a fixed point and a zero.
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Corollary (W. Hurewicz)

Assume that for any k = 1, ..., n, there are a nonempty
closed set Bk ⊂ Q, open disjoint sets U−k ,U

+
k ⊂ Q \ Bk

such that:
Q \ Bk = U−k ∪ U+

k

and
F−k ⊂ U−k , F+

k ⊂ U+
k .

Then
⋂n

k=1 Bk 6= ∅ (there is `2 version, too).

For proof: let fk (x) = ηk (x)d(x ,Bk ), where ηk = −1 on Uk , +1 on Uk and 0 on Bk ,

k = 1, ..., n.

Theorem (H. Steinhaus)

Consider an n × n chessboard and place
mines on any set of squares. Then: either
a king can move from the left to the right
omitting mines or a rook can move from
the bottom to the top using only mined
squares.
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Deimling Theorem
Theorem (Browder, Halpern-Benjamin, Deimling (1989))

Let E be a Banach space. If K ⊂ E is closed convex, f : K → E is compact and for
any y ∈ K

(INWD) f (y) ∈ y + TK (y),

where

TK (y) =
⋃
h>0

K − y

h
,

, then f has a fixed point.

For (a simple) proof assume that E is a Hilbert space. Let r : E → K be a (metric)

retraction i.e., ‖x − r(x)‖ = d(x ,K), x ∈ K . Let g = f ◦ r ; then g : E → E is

compact and, by the Schauder theorem, has a fixed point x̄ ∈ E

x̄ = g(x̄) = f (ȳ) where ȳ = r(x̄).

For each z ∈ K , 〈x̄ − ȳ , z − ȳ〉 6 0, i.e.

K − ȳ ⊂ {v ∈ E | 〈x̄ − ȳ , v〉 6 0}.

Hence if v ∈ TK (ȳ) then 〈x̄ − ȳ , v〉 6 0.

Thus v = x̄ − ȳ = f (ȳ)− ȳ ∈ TK (ȳ) =⇒ ‖x̄ − ȳ‖2 = 0. �
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Tangent cone

K ⊂ E closed convex, x ∈ K ,

TK (x) =
⋃
h>0

K − x

h

Cone.jpg

In fact it is a wedge, i.e. convex and if v ∈ TK (x), λ > 0, then λv ∈ TK (x).

• If x ∈ intK , then TK (x) = E .

• v ∈ TK (x) if and only if there are sequences (vn), (hn) such that v = limn→∞ vn,
hn ↘ 0 and x + hnvn ∈ K .
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Example

(1) If K = D(0,R) (a closed ball) in a Hilbert space E , then for x ∈ H with ‖x‖ = R

TK (x) = {v ∈ E | 〈x , v〉 6 0}.

(2) If Q = Πn
k=1[ak , bk ] is a cube and x ∈ ∂Q, then

v = (v1, ..., vn) ∈ TQ(x) ⇐⇒ ∀ k = 1, ..., n vk is

{
> 0 if xk = ak
6 0 if xk = bk .

(3) If K = [a, b], then TK (y) = R if y ∈ (a, b), TK (a) = [0,+∞), TK (b) = (−∞, 0].

(4) (Aubin-Frankowska) Let D ⊂ Rn closed convex. If
K = {u ∈ Lp(Ω,Rn) | u(x) ∈ D for a.a x ∈ Ω}, u ∈ K , then K is closed and convex
in Lp and

v ∈ TK (u) ⇐⇒ v(x) ∈ TD(u(x)) for a.a. x ∈ Ω.
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Corollary

A map f : Q → Rn

N satisfies (−T ) of the Miranda theorem ⇐⇒ ∀ x ∈ K −f (x) ∈ TQ(x).
N satisfies (T ) of the Miranda theorem ⇐⇒ ∀ x ∈ K f (x) ∈ TQ(x).

N A map f : Q→ `2 satisfies the assumption of the infinite dimensional Miranda
theorem ⇐⇒ ∀ x ∈ Q f (x) ∈ TQ(x).

Theorem (Halpern (1965), Halpern-Bergman (1968), Browder (1968))

• If K ⊂ E is compact convex, f : K → E is continuous and tangent, i.e.

∀ x ∈ K f (x) ∈ TK (x),

then f has a zero.

• If f is inward, i.e., ∀ x ∈ K f (x) ∈ x + TK (x) or outward, i.e.
∀ x ∈ K f (x) ∈ x − TK (x), then f has a fixed point.

Remark

If 0 ∈ K , then TK (x) ⊂ x + TK (x). Hence tangency (condition (T ) in Miranda)
implies inwardness and, hence, fixed points (and (−T ) does not).
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Compact nonconvex generalizations

We are going to formulate results that generalize the above „Miranda” theorems.

Definition (WK (1997))

A closed set K ⊂ E is an L-retract if there is a neighborhood retraction r : U → K
such that ‖r(x)− x‖ 6 Ld(x ,K) for some L > 1.

Example

K is an L-retract if:
(1) K is closed convex (with L = 1 + ε; with L = 1 if E is Hilbert);
(2) K is epi-Lipschitz (locally the epigraph of a Lipschitz functional);
(3) K is locally convex closed subset of a Riemannian manifold.

The set K is not an L-retract, be-
cause of the ”cusp” at ξ.
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Definition (Clarke)

Let K ⊂ E be closed and x ∈ K . The Clarke tangent cone

CK (x) := {v ∈ E | lim
h→0+, y→x, y∈K

d(y + hv ,K)

h
= 0}.

• v ∈ CK (x) ⇐⇒ if xn → x , hn → 0+ ⇒ ∃ vn → v such that xn + hnvn ∈ K .
• If K is closed convex then CK (x) = TK (x).

tangent.jpg
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Theorem (H. Ben-El-Mechaiekh, WK (TAMS 1999))

Let K be a compact L-retract, the Euler characteristic χ(K) 6= 0. Let f : K → E be
continuous and tangent:

∀ x ∈ K f (x) ∈ CK (x),

then there is x̄ ∈ K with f (x̄) = 0 (fixed point version is true, too).

Definition

If K ⊂ E closed,x ∈ K , then the normal cone to K at x

NK (x) := {p ∈ E∗ | ∀ v ∈ CK (x) 〈p, v〉 6 0}.

N If K is closed convex, then

NK (x) := {p ∈ E∗ | max
y∈K
〈p, y〉 = 〈p, x〉} = {p ∈ E∗ | ∀ v ∈ TK (x) 〈p, v〉 6 0}.

Theorem ( A. Ćwiszewski, WK (NA 2005))

If K is as above, Φ : K → E∗ is continuous (typically Φ(x) = ∇F ), then there is a
generalized critical point, i.e., x̄ ∈ K such that

Φ(x̄) ∈ NK (x̄).
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Compactness removed

Relaxing compactness of the domain requires compactness in the mapping.

Theorem (K. Deimling (NA 1992))

Let K ⊂ E be closed bounded convex, F : K ( E is continuous and condensing w.r.t.
Hausdorff (or Kuratowski) measure of noncompactness. If F is inward, i.e,
F (x) ∈ x + TK (x)) for x ∈ K , then F has a fixed point.

Thus far we considered equations of the form

f (x) = 0 or F (x) = x , x ∈ K ,

i.e., constrained to some closed K ⊂ E, assuming that f ,F : K → E is continuous

compact and subject to additional conditions (tangency, inwardness).

Now we turn to problems of the form

0 ∈ Ax + F (x), x ∈ K ,

where F : K → E is continuous , A : D(A)→ E is a densely defined ω-dissipative
operator for some ω ∈ R, i.e.: ‖λx − Ax‖ > (λ− ω)‖x‖ for x ∈ D(A), λ > ω and
R(λ0I − A) = E for some λ0 > ω (⇔ %(A) ∩ (ω,∞) 6= ∅) .

N Equivalently (for linear) A is the generator of a C0-semigroup {SA(t)}t>0 of
bounded linear operators on E, or • A = ∂ϕ, where E is Hilbert and ϕ : E→ R is
convex lower semicontinuous.
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Motivation

N Constrained elliptic BVP

(CEP) −∆u = f (x , u,∇u), x ∈ Ω, u(x) ∈ K; u|∂Ω = 0
(
or

∂u

∂ν

∣∣∣∣
∂Ω

= 0
)

and its (strong) solutions.

N Constrained parabolic initial BVP

(CPP) u̇(t)−∆u = f (t, x , u,∇u), t ∈ [0,T ], u(0, ·) = u0, u|∂Ω = 0, u(t, x) ∈ K

and its mild (or strong) solutions and periodic trajectories.

Here:

• f : Ω× RN × RNM → RN (or ϕ : [0,T ]× Ω× RN × RNM → RN) is continuous;

• Ω ⊂ RM is a bounded domain in RM with smooth boundary ∂Ω;

• K ⊂ RN is closed (convex) set of state constraints.
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Setting
• For u = (u1, ..., uN) ∈ D(A) := H1

0 (Ω) ∩ H2(Ω,RN)

Au = (∆u1, ...,∆uN),

where ∆ is the usual Laplacian with Neumann (or Dirichlet) boundary conditions.

• E0 = H1(Ω,RN), E = L2(Ω,RN),
K0 := {u ∈ E | u(x) ∈ K a.e. on Ω}, K := {u ∈ E | u(x) ∈ K a.e. on Ω};

• (for (CEP)) F (u) := f (·, u(·),∇u(·)), u ∈ E0;
• (for (CPP)) F (t, u) := f (t, ·, u(·),∇(·)), t ∈ [0,T ], u ∈ E0.

Abstract problem

0 = Au + F (u), u ∈ K ∩ D(A),

u′ = Au + F (t, u), u(0) = u0, u(t) ∈ K ∩ D(A) for t ∈ [0,T ].

where
N A : D(A)→ E is a densely defined (in E) linear operator,

D(A) ⊂ E0
j
↪→ E;

N K0 ⊂ E0, K ⊂ E are closed sets, j(K0) ⊂ K ;
N F : K0 → E is continuous.
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Results

• For any h > 0, h−1 ∈ %(A), the resolvent

Jh := (I − hA)−1

is well-defined.

Theorem (AĆ, WK (JDE 2011))

Assume that a closed K ⊂ E is a bounded L-retract such that:
(1) The resolvent invariance, i.e. Jh(K) ⊂ K for all h > 0;
(2) F : K → E is continuous, tangent to K , i.e., F (u) ∈ TK (u), u ∈ K ;
(3) A is ω-dissipative, %(A) ∩ (ω,∞) 6= ∅ and D(A) ↪→↪→ E.
Then:
(i) the Euler characteristic χ(K) is well-defined;
(ii) if χ(K) 6= 0 and K is bounded, then there is a solution to (CEP). i.e., there is
ū ∈ K ∩ D(A) such that 0 ∈ Au + F (u).

Remark

(a) If (1), then K is semigroup invariant, i.e., SA(t)K ⊂ K ; if K is convex ten these
conditions are equivalent.
(b) If K is convex, then it holds when A has (ω,+∞) ⊂ %(A) and D(A) ↪→↪→ E.
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Theorem (J. Siemianowski, WK (JFA to appear))

Suppose K0 ⊂ E0 and K ⊂ E are closed convex bounded, j(K0) ⊂ K and:
• A is densely defined, (ω,+∞) ⊂ %(A) for some ω ∈ R, D(A) ↪→↪→ E0;
• Jh(K) ⊂ K0 for h > 0 with hω < 1;
• F : K0 → E is continuous, bounded and F (u) ∈ TK (j(u)) for u ∈ K0,
then there is ū ∈ D(A) ∩ K0 with 0 = Aū + F (ū).

In the proof: one takes r : E→ K (exists) such that

‖r(x)− x‖ 6 2d(x ;K).

For small h > 0, with hω < 1, the fixed point problem

u = Jh(r(j(u) + hF (u)), u ∈ K ,

has a solution uh ∈ D(A) ∩ K , i.e., ξh := uh − hAuh = r(j(uh) + hF (uh)) = r(wh).

One shows that

Auh + F (uh) ∈ TK (j(uh)), wh − r(wh) = wh − ξh = h(Auh + F (uh)).

The left expression is „perpendicular” to K , the right one is tangent: hence both are

almost zero; passing h→ 0 yields the required ū ∈ K ∩ D(A).
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Specific applications

• Let f : [0,T ]× RN × RN → RN satisfy Carathéodory conditions and sublinear

growth.

• Let K ⊂ RN be closed convex and bounded subset. We assume that −f is tangent

to K with respect to the second variable, i.e.

−f (x , u, v) ∈ TK (u) for every u ∈ K , x ∈ [0,T ], v ∈ RN .

Theorem (JS, WK (2015))

The following Neumann bvp:{
ü(x) = f (x , u(x), u̇(x)) a.e. on [0,T ],

u̇(0) = u̇(R) = 0.
(1)

has a solution in u ∈W 2,1([0,T ],RN) such that u(x) ∈ K for all x ∈ [0,T ].
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Let K ⊂ RN is closed convex and bounded.

• Let f : Ω×K× (RM)N → RN such that:

- f (·, u, v) : Ω→ RN is measurable; f (x , ·, ·) : K× (RM)N → RN is continuous;

- There is b ∈ L2(Ω) such that ‖f (x , u, v)‖ 6 b(x) for a. e. x ∈ Ω and all

u ∈ K, v ∈ (RM)N .

- f (x , u, v) ∈ TK(u) for a.a. x ∈ Ω and all u ∈ K , v ∈ (RM)N.

• Consider the system of N of nonlinear Poisson equations with Neumann BVP:
−∆u(x) = f (x , u(x),∇u(x)) in Ω,

∂u1(x)

∂n
= . . . =

∂uN(x)

∂n
= 0 on ∂Ω,

(2)

where ∇u = (∇u1, . . . ,∇uN),
∂ui

∂n
denotes the outward normal derivative of ui .

Theorem (JS, WK (2015))

There is a solution u ∈ H2(Ω,RN) such that
∂u

∂n
= 0 in the sense of trace.
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Recall that K0 = {u ∈ E0 = H1(Ω,RN) | u(x) ∈ K},
K = {u ∈ E = L2(ω,RN) | u(x) ∈ K}. A = ∆ with Neumann boundary condition.

In particular one has to show that for each h > 0,

(I − h∆)−1(K) ⊂ K0,

i.e. sort of a maximum principle:

Theorem (JS, WK (2015))

If f ∈ K , h > 0 and u ∈ D(∆) such that

u − h∆u = f ,

then u ∈ K0.

Theorem (Bishop-Phelps (1978))

If K ⊂ E, E separable, is closed convex, then it is the intersection of a countable
collection of closed halfspaces that support it.

The consequence of the modified separation theorem.
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The degree for elliptic constrained problems

The topological degree (the homotopy invariant) responsible for the existence of zeros

of:

(1) (Miranda situation) ϕ : K → E, where K ⊂ E is a locally compact L-retract, ϕ is

weakly tangent to K , usc with closed convex values (or strongly tangent to K and

admissible) ;

(2) (Deimling situation) I − ϕ : K ( E, where K ⊂ E is closed convex, ϕ is weakly

inward to K usc, condensing with convex compact values;

(3) (Elliptic situation) A+F : K → E, where K is an L-retract, A generates a compact

semigroup, F is weakly tangent to K , H-usc with weakly compact convex values.

• The Conley index approach for (CEP) with Ω = RN : no compactness of the

semigroup generated by the Schrödinger operator −∆ + V .
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Constrained parabolic problems

We consider the problem of the form

u̇ = Au + F (t, u)

and look for a periodic mild solution u, i.e. a continuous u : [0,T ]→ E such that

u(0) = u(T )

(CPP) u(t) = SA(t)u(0) +

∫ t

0
SA(t − s)w(s) ds,

where w(s) ∈ F (s, u(s)) for a.a. s ∈ [0,T ].

Theorem (JS, WK (2015))

(1) If K is closed convex and bounded, then (CPP) has a periodic solution.

(2) Suppose K is closed convex, 0 ∈ K , F is bounded and spectral bound

s(A) := {Reλ | λ ∈ σ(A)} < 0

(as for ∆), then (CPP) has a periodic solution.

Hopf bifurcation..., periodic solutions without boundedness..., multiplicity of

solutions...
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This would be all (the survey paper of Mawhin (2013); tens of new proofs,
rediscoveries, applications and a recent preprint Fonda-Gidoni (2015)) if not for....
WHAT FOLLOWS.

W. Kryszewski O twierdzeniu Mirandy



Robin boundary condition

• Let u ∈ H1(Ω). We say that ∆u ∈ L2(Ω) is there is f ∈ L2(Ω) such that∫
Ω
∇u · ∇v = −

∫
Ω
fv

for all v ∈ C∞0 (Ω). In this case we let ∆u := f (correct definition).

• Let u ∈ H1(Ω) and ∆ ∈ L2(Ω). We say that ∂u
∂ν
∈ L2(Γ) if there is b ∈ L2(Γ) such

that ∫
Ω
∇u · ∇v +

∫
Ω

∆uv =

∫
Γ
bv |Γ

for all v ∈ H1(Ω). In this case we let ∂u
∂ν

:= b (correct definition).

These definitions are such that the Green Formula∫
Ω
∇u · ∇v +

∫
Ω

∆uv =

∫
Γ

∂u

∂ν
v |Γ

(which is „clasically” valid for u, v ∈ C2(Ω)) holds for all v ∈ H1(Ω), whenever

u ∈ H1(Ω), ∆u ∈ L2(Ω) and ∂u
∂ν
∈ L2(Ω).
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Operators – Lions construction

• Let (H, 〈·, ·〉H) be a Hilbert space, (V , ‖ · ‖) a Banach space such that j : V ↪→ H
(V ⊂ H and j : V → H, j(v) := v is continuous) and V is dense in H.

Fact (Gelfand evolution triple)

After the identification H = H∗ (via the Riesz theorem), i : H ↪→ V ∗

(〈v , i(h)〉 := 〈v , h〉H, h ∈ H, v ∈ V ); if V is reflexive, then H∗ is dense in V ∗, i.e.,
V ↪→ H ↪→ V ∗.

• [Dirichlet form] Let a bilinear form a : V × V → R be symmetric, continuous and

elliptic, i.e.,

a(v , v) + ω‖v‖2H > α‖v‖
2
V ,

for all v ∈ V and some ω ∈ R and α > 0.

• Define A : V → V ∗ by

Av(w) := a(v ,w), v ,w ∈ V .

• Define A : D(A)→ H, D(A) ⊂ H, by

x ∈ D(A) and y = Ax ⇐⇒ x ∈ V and a(x , v) = 〈y , v〉H ∀ v ∈ V .

In other words A = A|D(A). We say that A, A are generated by the form a.
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Theorem

Let V ↪→ H ↪→ V ∗ be a Gelfand triple, a : V × V → R a Dirichlet form (i.e.,
symmetric, continuous and elliptic). If A : V → V ∗ and A : D(A)→ H are generated
by a, then:
(1) A is symmetric (i.e., 〈w ,Av〉 = 〈v ,Aw〉), linear and bounded.
(2) D(A) ⊂ V is a dense (linear) subspace in H, A is self adjoint linear and closed
and, in general unbounded, but 〈Au, u〉H > −ω‖u‖2H;
(3) −A is the generator of an analytic C0 semigroup {SA(t);H 	}t>0 such that

‖SA(t)‖H 6 eωt , t > 0.

(4) The resolvent set %(A) ⊃ (ω,+∞), ‖(λI + A)−1‖L(H) <
1

λ−ω for λ > ω.
(5) If ω = 0, i.e., a is coercive, then %(−A) ⊃ (−γ,+∞) for some γ > 0; in particular
A−1 : H→ D(A) is well-defined and continuous with ‖A−1‖ 6 1

γ
.

(6) A has compact resolvents ⇐⇒ the embedding V ↪→ H is compact; hence the
semigroup {SA(t)} is compact, i.e., SA(t) is compact for all t > 0. The spectrum
σ(A) consists then of eigenvalues only.
(7) If V ↪→ H is compact and H is separable, then H basis (en)∞n=1 such that

Aen = λnen, where for n ∈ N λn 6 λn+1, lim
n→∞

λn = +∞.

One has λn = sup{minu∈W1 a(u, u) |W ⊂ V , dimV /W = n − 1} here W ⊂ V is a
closed subspace and W1 := {u ∈W | ‖u‖H = 1}.
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