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A Bernard Bolzano (1791-1848): a continuous function f : K = [a, b] — R such that
f(a)f(b) < 0 equals zero at some X € K.
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Theorem (Bolzano Fixed Point)

If f(a) > a, f(b) < b (this holds < (INWD) f(y) € y+ Tk(y) for all y € K), then
f has a fixed point x € K, i.e. f(X) = X.

v

Corollary

Ifa<0< bandf(a) >0, f(b) <0 (this holds < (T) f(y) € Ti(y) for all y € K),
then f has a fixed point.

<
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In 1883, Henri Poincaré announced (verbatim translation by
F. Browder):

A Let F1, ..., F, be continuous functions of n variables

X1, ..., Xn: the variable x; is subjected to vary between the
limits —a; and +aj. Let us assume that:

e for x; = a;, F; is constantly positive;

e for x; = —a;, F; is constantly negative;

| say: there will exist a system of values of x where all f;
vanish.
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Poincaré concluded with a hint to proof in ,,an important theorem of Leopold
Kronecker” from 1869. In 1886 Poincaré gave his famous paper on the homotopy

invariance of the index: a basis of a modern proof; but the result was rapidly forgotten.

The result was implicitly rediscovered in 1911 by L. E. J. Brouwer who proved that:
A Under a continuous map of the unit cube into itself which displaces every point less
then half unit, the image has an interior point.

Brouwer's fixed point theorem, n = 3, was proved by in 1909; an equivalent was
established by P. Bohl in 1904; the proof for arbitrary n is due to J. H. Hadamard in
1910 (Kronecker's index). In 1912 Brouwer proved it with simplicial approximations
and inceptions of degree theory.
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A Rediscovered in 1940 by Sivio Cinquini (incorrect proof);
A Proved by Carlo Miranda in 1941 (showing the
equivalence with the Brouwer fixed point theorem).

Theorem (Poincaré-Miranda)

Let Q@ = M}_, [ak, bx] be an n-dimensional cube and let
Fo =={x€ Q| xx = ax}, F,j' ={x€ Q| xk=0by}, k=1,2,....n.
Let f = (f1,...,fn) : Q = R" be continuous and for all k =1,....n

<0 foreveryx € Fr >0 foreveryx € Fe

(=7) fk(x){ or (T) fk(X){

>0 forevery x € Fk+ <0 forevery x € F;r.
Then there is X € Q such that f(X) = 0.

The assertion holds true if (—T) and (T) are ,mixed’:
(mixT) ifx € F and y € Fit, then fi(x) - fi(y) < 0.

The proof is simple. One shows that if f(x) # 0 on 9Q, then f is homotopic to —/;
hence deg(f,int Q) = (—1)" # 0 (last proof: M Vrahatis 1999 in PAMS)
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Corollary (Zgliczynski (2001))

If0 € Q and for all k =1, ...;n, (T) holds, i.e.,
(T) fi(x) =20 for x € F~ and fi(y) <0 for yGF,j,

then there is x* € Q such that f(x*) = x*.

Condition (T) cannot be replaced by (—T) and the result is not true when 0 ¢ Q.

Theorem (Ghezzo (1947), Schifer (2007), Mawhin (2013) )

(1) Let Q = {x € €2 | |xx| < %} be the Hilbert cube and f : Q — ¢? and such that for
all k e N

, 1 1
(mixT) fie (X1, oy Xk—1, g Xt 200) © (581 00 St PRRCEE ..) S0,
then f has a zero.
(2) If for all k € N,

1 1

(7T) fi(X,y oy Xk—1, — g St )20, filxt, . Xk—1, Piazy ) &< (1)
then f has a fixed point and a zero.
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Corollary (W. Hurewicz)

4

Assume that for any k =1, ..., n, there are a nonempty
closed set By C Q, open disjoint sets U, U,j C Q\ Bk
such that:

Q\ B = U, UU

and

Y = = + +
ﬁ F- cuU;, Ff c U}

Then (;_; Bk # 0 (there is €2 version, too).

v

For proof: let fi(x) = nx(x)d(x, Bi), where 7, = —1 on Uy, +1 on UX and 0 on By,
k=1,...,n.

Theorem (H. Steinhaus)

Consider an n X n chessboard and place
mines on any set of squares. Then: either
a king can move from the left to the right
omitting mines or a rook can move from
the bottom to the top using only mined
squares.
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Deimling Theorem
Theorem (Browder, Halpern-Benjamin, Deimling (1989))

Let E be a Banach space. If K C E is closed convex, f : K — E is compact and for

anyy € K
(INWD) f(y) € y + Tk(y),
where _
K-y
TK(y) = U h )
h>0

, then f has a fixed point.

For (a simple) proof assume that E is a Hilbert space. Let r : E — K be a (metric)
retraction i.e., ||[x — r(x)|| = d(x,K), x e K. Let g=for;theng: E— E'is

compact and, by the Schauder theorem, has a fixed point x € E

(x) = f(y) where y = r(x).

X1
Il
0q

Foreachze K, (x —y,z—y) <0, i.e.
K—ycCc{veE|{(x—y,v) <0}

Hence if v € Tk (y) then (x — y,v) <O0.
Thus v =%~y = (7) ~ 7 € Tk(7) = %~ 7> =0. O



K C E closed convex, x € K, . \,
K —x
Tk(x) = U
h>0

x

Coneips

In fact it is a wedge, i.e. convex and if v € Tk(x), A > 0, then Av € Tk(x).

o Ifx € int K, then Tk(x) = E.

e v € Tk(x) if and only if there are sequences (vy), (hn) such that v = limp—oo v,
hn \( 0 and x + hpv, € K.
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(1) If K = D(0, R) (a closed ball) in a Hilbert space E, then for x € H with ||x|| = R
Ti(x) = {v € E | (x,v) <O},

(2) If Q =N7_;[ak, bi] is a cube and x € OQ, then

>0 if xx = ax

v=(v1,....vn) € Te(x) <= Vk=1,..,n vis {gO i x = by

(3) If K =[a, b], then Tx(y) =R if y € (a,b), Tk(a) = [0,+0c0), Tk(b) = (—o0,0].
(4) (Aubin-Frankowska) Let D C R" closed convex. If

K = {u e LP(Q,R") | u(x) € D for a.ax € Q}, u € K, then K is closed and convex
in LP and

v e Tk(u) < v(x) € Tp(u(x)) for a.a. x € Q.
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Corollary

Amapf:Q — R"
A satisfies (—T) of the Miranda theorem <= Vx € K —f(x) € Tg(x).
A satisfies (T) of the Miranda theorem <= Vx € K f(x) € Tg(x).

A A map f : Q — (2 satisfies the assumption of the infinite dimensional Miranda
theorem <= Vx € Q f(x) € Tg(x).

Theorem (Halpern (1965), Halpern-Bergman (1968), Browder (1968))

e If K C E is compact convex, f : K — E is continuous and tangent, i.e.

Vx €K f(x) € Ti(x),
then f has a zero.

e Iff is inward, i.e.,, Vx € K f(x) € x + Tk(x) or outward, i.e.
Vx € K f(x) € x— Tk(x), then f has a fixed point.

4

If 0 € K, then Tk(x) C x + Tk(x). Hence tangency (condition (T) in Miranda)
implies inwardness and, hence, fixed points (and (—T) does not).
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Compact nonconvex generalizations

We are going to formulate results that generalize the above ,Miranda” theorems.

Definition (WK (1997))

A closed set K C E is an L-retract if there is a neighborhood retraction r: U — K
such that ||r(x) — x|| < Ld(x, K) for some L > 1.

K is an L-retract if:

(1) K is closed convex (with L =1+ ¢; with L = 1 if E is Hilbert);
(2) K is epi-Lipschitz (locally the epigraph of a Lipschitz functional);
(3) K is locally convex closed subset of a Riemannian manifold.

The set K is not an L-retract, be-

cause of the "cusp” at &.
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Definition (Clarke)

Let K C E be closed and x € K. The Clarke tangent cone

Ck(x) ={vEE| lim A i 69)

= 0}.
h—0t, y—x, yeK h }

o v E Cx(x) < if xo > x, hy =0T = Fv, — vsuch that x, + hyv, € K.
e If K is closed convex then Cx(x) = Tk(x).

7 ~
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Theorem (H. Ben-El-Mechaiekh, WK (TAMS 1999))

Let K be a compact L-retract, the Euler characteristic x(K) # 0. Let f : K — E be
continuous and tangent:

Vx € K f(x) € Ck(x),

then there is X € K with f(X) = 0 (fixed point version is true, too).
”

If K C E closed,x € K, then the normal cone to K at x

Nk(x):={p € E* |Vv € Ck(x) (p,v) <O0}.
A If K is closed convex, then

Nk (x) :={p € E* | Téa;(p,y) =(p,x)} ={p€E" |Vv € Tk(x) (p,v) <0}

Theorem ( A. Cwiszewski, WK (NA 2005))

If K is as above, ® : K — E* is continuous (typically ®(x) = VF), then there is a
generalized critical point, i.e., X € K such that

d(x) € Nk(x).
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Compactness removed

Relaxing compactness of the domain requires compactness in the mapping.

Theorem (K. Deimling (NA 1992))

Let K C E be closed bounded convex, F : K — E is continuous and condensing w.r.t.
Hausdorff (or Kuratowski) measure of noncompactness. If F is inward, i.e,
F(x) € x + Tk(x)) for x € K, then F has a fixed point.

Thus far we considered equations of the form
f(x)=0 or F(x)=x, x€K,
i.e., constrained to some closed K C E, assuming that f, F : K — E is continuous
compact and subject to additional conditions (tangency, inwardness).
Now we turn to problems of the form
0 € Ax+ F(x), x €K,

where F : K — E is continuous , A : D(A) — E is a densely defined w-dissipative
operator for some w € R, i.e.: ||[Ax — Ax|| = (A — w)||x|| for x € D(A), A > w and
R(Xol — A) =E for some \g > w (< 0(A) N (w,0) # 0)

A Equivalently (for linear) A is the generator of a Co-semigroup {Sa(t)}+>o0 of
bounded linear operators on E, or @ A = Oy, where E is Hilbert and ¢ : E — R is
convex lower semicontinuous.

4
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A Constrained elliptic BVP

(CEP) —Au=f(x,u,Vu), x€Q, u(x)€K; ulpg =0 (or ?
v

_ o)
oQ

and its (strong) solutions.
A Constrained parabolic initial BVP
(CPP) u(t) — Au=f(t,x,u,Vu), t€[0,T], u(0,:)= uo, ulpa =0, u(t,x) €K

and its mild (or strong) solutions and periodic trajectories.

Here:
e F:Q xRV XxRW RN (or p: [0, T] x Q x RMN x RM — RN) is continuous;
e Q C RM is a bounded domain in RM with smooth boundary 99;

o K C RV is closed (convex) set of state constraints.
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Setting
o For u= (uy, ..., uy) € D(A) := H3(Q) N H?(Q,RN)

Au = (Au, ..., Auy),
where A is the usual Laplacian with Neumann (or Dirichlet) boundary conditions.

o Eo = HY(Q,RN), E = [2(Q,RN),
Ko:={u€eE|u(x)eK ae. onQ}, K:={u€cE|u(x)€K ae. onQ};

o (for (CEP)) F(u) := (-, u(), Vu(-)), v € Eo;
o (for (CPP)) F(t,u):= f(t,-,u(-),V()), te€[0,T], ué€Eo.

Abstract problem
0= Au+ F(u), ue KN D(A),
u' = Au+ F(t,u), u(0)= uo, u(t) € KN D(A) fort € [0, T].

where
A A:D(A) — E is a densely defined (in E) linear operator,

D(A) C Eo & E;

A Ko C Eo, K CE are closed sets, j(Ko) C K ;
A F : Ko — E is continuous.

o
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e For any h >0, h=1 € g(A), the resolvent
Jp = (I — hA)!

is well-defined.

Theorem (AC, WK (JDE 2011))

Assume that a closed K C [E is a bounded L-retract such that:

(1) The resolvent invariance, i.e. Jy(K) C K for all h > 0;

(2) F : K — E is continuous, tangent to K, i.e., F(u) € Tx(u), u € K;

(3) A is w-dissipative, o(A) N (w,00) # @ and D(A) << E.

Then:

(i) the Euler characteristic x(K) is well-defined;

(ii) if x(K) # 0 and K is bounded, then there is a solution to (CEP). i.e., there is
o € KN D(A) such that 0 € Au+ F(u).

v

(a) If (1), then K is semigroup invariant, i.e., Sa(t)K C K; if K is convex ten these
conditions are equivalent.
(b) If K is convex, then it holds when A has (w, +o0) C o(A) and D(A) < E.
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Theorem (J. Siemianowski, WK (JFA to appear))

Suppose Ko C Eg and K C E are closed convex bounded, j(Ko) C K and:
e A is densely defined, (w,+00) C o(A) for some w € R, D(A) —< Eog;
o Jy(K) C Ko for h > 0 with hw < 1;

e F: Ko — E is continuous, bounded and F(u) € Tk (j(u)) for u € Ko,
then there is i € D(A) N Ko with 0 = Ad + F(a).

In the proof: one takes r : E — K (exists) such that
[[r(x) = x|| < 2d(x; K).
For small h > 0, with hw < 1, the fixed point problem
u=Jp(r(j(u) + hF(u)), u€eK,

has a solution u, € D(A) N K, i.e., &, 1= up — hAup = r(j(up) + hF (up)) = r(wp).

One shows that
Aup + F(up) € T(i(un)), wn — r(wy) = wy — & = h(Aup + F(up)).

The left expression is ,perpendicular’ to K, the right one is tangent: hence both are

almost zero; passing h — 0 yields the required & € K N D(A).
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Specific applications

o Let f: [0, T] x RV x RN — RN satisfy Carathéodory conditions and sublinear
growth.

o Let K C RN be closed convex and bounded subset. We assume that —f is tangent

to K with respect to the second variable, i.e.

—f(x,u,v) € Tk(u) forevery ue K, xe[0,T], ve RV

Theorem (JS, WK (2015))

The following Neumann bvp:

{i](x) = f(x, u(x), i(x)) a.e. on [0, T],

i(0) = i(R) = 0. )

has a solution in u € W2([0, T], RN) such that u(x) € K for all x € [0, T].
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Let K C RN is closed convex and bounded.

o Let f:Q x K x (RM)N — RN such that:

- f(-,u,v) 1 Q — RN is measurable; f(x,-,-) : K x (RM)N — RN is continuous;
- There is b € L2(Q) such that ||f(x, u, v)| < b(x) for a. e. x € Q and all
uekK, ve (RMN

- f(x,u,v) € Tic(u) fora.a. x € Qand all u€ K,v € (RM)N.

e Consider the system of N of nonlinear Poisson equations with Neumann BVP:

—Au(x) = f(x, u(x), Vu(x)) inQ,

(2)
Ou1(x) = 000 = M =0 on9Q,
on on
8u,' q g
where Vu = (Vus,...,Vuy), 3 denotes the outward normal derivative of u;.
n

Theorem (JS, WK (2015))

0
There is a solution u € H?(, RN) such that 8—u = 0 in the sense of trace.
n
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Recall that Ko = {u € Eg = HY(Q,RN) | u(x) € K},
K ={u€E=1%w,R") | ux) € K}. A=A with Neumann boundary condition.

In particular one has to show that for each h > 0,
(I = hA)~Y(K) C Ko,

i.e. sort of a maximum principle:

Theorem (JS, WK (2015))
Iff € K, h>0 and u € D(A) such that

u— hAu =",

then u € Kp.

Theorem (Bishop-Phelps (1978))

If K C E, E separable, is closed convex, then it is the intersection of a countable
collection of closed halfspaces that support it.

| A

\

The consequence of the modified separation theorem.
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The degree for elliptic constrained problems

The topological degree (the homotopy invariant) responsible for the existence of zeros
of:

(1) (Miranda situation) ¢ : K — E, where K C E is a locally compact L-retract, ¢ is
weakly tangent to K, usc with closed convex values (or strongly tangent to K and
admissible) ;

(2) (Deimling situation) /| — ¢ : K — E, where K C E is closed convex, ¢ is weakly
inward to K usc, condensing with convex compact values;

(3) (Elliptic situation) A+ F : K — E, where K is an L-retract, A generates a compact

semigroup, F is weakly tangent to K, H-usc with weakly compact convex values.

e The Conley index approach for (CEP) with Q = RV: no compactness of the
semigroup generated by the Schrédinger operator —A + V.
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Constrained parabolic problems

We consider the problem of the form
U= Au+ F(t,u)

and look for a periodic mild solution u, i.e. a continuous u : [0, T] — E such that
u(0) = u(T)

(CPP) u(t) = Sa(t)u(0) + /ot Sa(t — s)w(s) ds,

where w(s) € F(s, u(s)) for a.a. s € [0, T].

Theorem (JS, WK (2015))

(1) If K is closed convex and bounded, then (CPP) has a periodic solution.
(2) Suppose K is closed convex, 0 € K, F is bounded and spectral bound
s(A) :={ReX | A€ d(A)} <0

(as for A), then (CPP) has a periodic solution.

Hopf bifurcation..., periodic solutions without boundedness..., multiplicity of

solutions...
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rediscoveries, applications and a recent preprint Fonda-Gidoni (2015)) if not for....

This would be all (the survey paper of Mawhin (2013); tens of new proofs,
WHAT FOLLOWS. J
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Robin boundary condition

o Let u € HY(Q). We say that Au € L?(Q) is there is f € L?(RQ) such that

/Vu~Vv:—/fv
Q Ja

for all v € C§°(£2). In this case we let Au := f (correct definition).
o Let u € HY(Q) and A € L?(Q). We say that % € L2(T) if there is b € L2(T) such

that
/Vu-Vv+/Auv:/bv|r
Q Q r

for all v € H1(Q). In this case we let 2% := b (correct definition).

These definitions are such that the Green Formula

/Vu-Vv+/Auv:/@v|r
Q Ja Jr ov

(which is ,clasically” valid for u,v € C3(Q)) holds for all v € H(Q2), whenever
u € HYQ), Au € [2(Q) and 2% € 12(Q).
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Operators — Lions construction

o Let (H, (-,-)m) be a Hilbert space, (V, || - ||) a Banach space such that j : V < H
(VCHandj:V —H, j(v) := v is continuous) and V is dense in H.

Fact (Gelfand evolution triple)

After the identification H = H* (via the Riesz theorem), i : H — V*
((v,i(h)) :=(v,h)m, h € H, v € V); if V is reflexive, then H* is dense in V*, i.e.,
Vo H— V.

e [Dirichlet form] Let a bilinear form a: V x V — R be symmetric, continuous and
elliptic, i.e.,
a(v,v) +wlvi > ellviy,
for all v € V and some w € R and o > 0.
e Define A: V — V* by

Av(w) :=a(v,w), v,we V.

e Define A: D(A) — H, D(A) C H, by
x€D(A)andy = Ax <= xe€ Vanda(x,v)=(y,v)g YveV.

In other words A = A|D(A). We say that A, A are generated by the form a.

W. Kryszewski O twierdzeniu Mirandy



Theorem

Let V — H < V* be a Gelfand triple, a: V x V — R a Dirichlet form (i.e.,
symmetric, continuous and elliptic). If A:V — V* and A: D(A) — H are generated
by a, then:

(1) A is symmetric (i.e., (w, Av) = (v, Aw)), linear and bounded.

(2) D(A) C V is a dense (linear) subspace in H, A is self adjoint linear and closed
and, in general unbounded, but (Au, uyy > —wl|ul|3;
(3) —A is the generator of an analytic Co semigroup {Sa(t); H O}¢>0 such that

[Sa(t)llm < &', t>0.

(4) The resolvent set o(A) D (w, +00), [[(A + A) 7| 2y < ﬁ for A > w.

(5) If w =0, i.e, a is coercive, then o(—A) D (—~,+o0) for some v > 0; in particular
A~L . H — D(A) is well-defined and continuous with [|A=1|| < %

(6) A has compact resolvents <= the embedding V — H is compact; hence the
semigroup {Sa(t)} is compact, i.e., Sa(t) is compact for all t > 0. The spectrum
o(A) consists then of eigenvalues only.

(7) If V. — H is compact and H is separable, then H basis (e,)2; such that

Aep, = A\pen, where forn € N\, < A\pr1, lim \p = 4oo0.
n— oo

One has A\, = sup{min,cw, a(u,u) | W C V, dimV/W =n—1} here W C V is a
closed subspace and Wy := {u € W | ||u|lg = 1}.
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