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Introduction

We study hyperelastic deformations of neohookean materials in
planar domains, called plates. These problems are motivated by
recent remarkable relations between Geometric Function Theory
(GFT) and the theory of Nonlinear Elasticity (NE).
Both theories are governed by variational principles. We confine
ourselves to deformations of bounded Lipschitz planar domains X
and Y.
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The general theory of hyperelasticity deals with:

Sobolev homeomorphisms h : X onto−→ Y

Jh
def
== detDh > 0;

which minimize the stored energy functional

E [h] =

∫
X
E (|Dh|, detDh) dx , where E : R+ × R+ → R.

The stored energy is determined by the elastic and mechanics
properties of the material.
Hereafter Dh ∈ R2×2 stands for the deformation gradient and |Dh|
its Hilbert-Schmidt norm.
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H p(X,Y) space

We are concerned with orientation-preserving homeomorphisms
h : X onto−→ Y of the Sobolev class W 1,p(X,C), denoted by
H p(X,Y). The term neohookean refers to a stored energy
function E which increases to infinity when Jh approaches zero.
A model example is

Ep
q[h] =

∫
X

[
|Dh|p +

1

(detDh)q

]
dx , p > 1 and q > 0 . (1)

We assume that the class of admissible homeomorphisms is
nonempty; that is, there is h ∈H p(X,Y) such that Ep

q[h] <∞.
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We shall accept the weak limits of energy-minimizing sequences of
homeomorphisms as legitimate deformations.
We allow the so called weak interpenetration of matter, squeezing
of the material can occur.
Remark. This changes the nature of minimization problem to the
extent that minimal energy (usually attained) can be strictly
smaller than the infimum energy among homeomorphisms
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How to enlarge the class of homeomorphisms as little as possible
to ensure the existence of minimizers in that class?

monotone Sobolev mappings
Indeed, that such a class is a bare minimal enlargement of
homeomorphisms follows from a Sobolev variant of Young’s
theorem.
A continuous map between compact oriented topological
2-manifolds (such as plates and thin films) is monotone if and only
if it is a uniform limit of homeomorphisms.
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Definition (C.B. Morrey) Monotonicity simply means that for a
continuous h : X onto−→ Y the preimage h−1(C ) of a continuum
C ⊂ Y is a continuum in X.
The Sobolev variant reads as

Theorem (approximation by Sobolev homeomorphisms)

Let X and Y be bounded Lipschitz planar domains. Suppose that
h : X onto−→ Y is a monotone (continuous) Sobolev mapping in
W 1,p(X,R2) , 1 < p <∞. Then h can be approximated strongly in
norm topology W 1,p(X,R2) and uniformly by homeomorphisms
hj : X onto−→ Y.
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Let M p (X,Y) denote the class of orientation preserving
monotone mappings h : X onto−→ Y in W 1,p(X,C).

Theorem (Main 1)

Let p > 2 and q > 0. Then there exists h◦ ∈M p (X,Y) such that

Eq
p[h◦] = inf

h∈M p(X,Y)
Ep
q[h] (2)
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Theorem (Main 2)

Let p > 2 and q > p
p−2 . Then there exists a homeomorphism

h◦ ∈H p(X,Y) such that

Ep
q[h◦] = inf

h∈M p(X,Y)
Ep
q[h] = inf

h∈H p(X,Y)
Ep
q[h] .

The existence of monotone minimizer h◦ is ensured by Theorem
(Main 1) and the fact that h◦ is a homeomorphism follows by:

Theorem

Let p > 2 and q > p
p−2 . If h ∈M p(X,Y) and∫

Ω

(
|Dh|p +

1

Jqh

)
dx < ∞ for every subdomain Ω ⊂⊂ X,

then h : X onto−→ Y is a homeomorphism.
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Remark 1. Theorem (Main 2) also holds for p = 2 and q =∞, in
which case the finite energy condition should be understood as:∫

X
|Dh|2 dx < ∞ and

1

detDh
∈ L∞(X),

meaning that detDh(x) > 1
C > 0 for a constant C = ‖J−1

h ‖L∞(X).
Remark 2. Theorem (Main 2) fails if 0 < q < p

p−2

Example

For 0 < q < p
p−2 , there exists a noninjective h ∈M p(X,Y) with

Ep
q[h] <∞.
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Partial injectivity

This example raises a question about partial injectivity. We have:

Theorem

Suppose that a monotone map h : X→ Y of the Sobolev class
W 1,2(X,C) has a positive Jacobian determinant a.e. Then

h is globally invertible in the sense that: For every h ∈ Ap

with p > 2 and

Ap def
== {h ∈ C (X,C)∩W 1,p(X,C) : J(x , h) > 0 a.e., h = ϕ on ∂X}

the following set has full measure:

Yh = {y ∈ h(X) : h−1(y) is a single point } ⊂ Y (3)

There exists Xh of full measure in X such that h restricted to
Xh is injective.
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Study of the branch set

Study of

Bh
def
== {x ∈ X : h fails to be homeomorphic near x}

and its image h(Bh).

Example

If 0 < q < p
p−2 , then there exists h ∈M p(X,Y) with Ep

q[h] <∞
such that |Bh| > 0 and |h(Bh)| > 0.

Our example is based on a Cantor type construction.

Teresa Radice A Neohookean model of plates



Important lemma

Lemma

Let Q ⊂ R2 be an arbitrary square. For every p > 2 and
0 < q < p

p−2 there exists a non-injective monotone map

Φ ∈M p(Q,Q) of finite Ep
q -energy, which is the identity near the

boundary of Q .
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Construction of Cantor set

Cornersquares. Suppose we are given a square Q = I × J ⊂ R2 (I
and J closed intervals of the same lenght ) and a parameter
0 < ε < 1 .
The notation εI and εJ will stand for the intervals of the same
centers but ε -times smaller in length, respectively.
Cutting them out from I and J gives the decompositions:

I \ εI = I− ∪ I+ and J \ εJ = J− ∪ J+

into the left and the right, as well as into the lower and the upper
subintervals.
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The Cartesian product consists of four subsquares:

(I \ εI )× (J \ εJ) = Q+
+ ∪ Q+

− ∪ Q−− ∪ Q−+ .

Explicity

Q+
+

def
== I+×J+ , Q+

−
def
== I−×J+ , Q−−

def
== I−×J− , Q−+

def
== I+×J− .

Each of these sub-squares touches exactly one corner of Q , which
motivates our calling Q+

+ , Q+
− , Q

−
− , Q

−
+ the cornersquares of

Q ; more precisely, the first generation of cornersquares.
We shall also spot the so-called centersquare of Q , defined by
εQ = εI × εJ .
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Figure: Cornersquares as building blocs for a Cantor type construction
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Second generation of cornersquares

Choose another positive ε -parameter, say ε = ε2 . Then every
cornersquare of Q gives rise to its own four cornersquares
determined by this parameter, see the middle part of Figure 1. In
this way we obtain sixteen cornersquares of so-called second
generation. According to our notation these are:

Q++
++ Q++

+− Q+−
+− Q+−

++

Q++
−+ Q++

−− Q+−
−− Q+−

−+

Q−+
−+ Q−+

−− Q−−−− Q−−−+

Q−+
++ Q−+

+− Q−−+− Q−−++

See also the third generation of 64 cornersquares in the right hand
side of Figure 1.
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The induction procedure

Fix a sequence of ε -parameters rapidly decreasing to 0, say
(ε1, ε2, ...) with εn = 4−n . We begin with the base 1× 1 square
Q ⊂ R2 and the first ε - parameter equal to ε1 . This gives us
the first generation of four cornersquares Qβ1

α1 ⊂ Q , where both
indices run over the set {+ , −} . We let F1 denote this family of
cornersquares.
In the second step we take ε2 as the ε -parameter and look at the
cornersquares of every Qβ1

α1 . Denote them by Qβ1 β2
α1 α2 ⊂ Qβ1

α1 , where
α2, β2 ∈ {+ , −} . They form the family F2 of second generation.

Teresa Radice A Neohookean model of plates



More generally, given the family Fn of cornersquares
Qβ1 β2...βn
α1 α2...αn ⊂ Q

β1 β2...βn−1
α1 α2...αn−1 ∈ Fn−1 , we take εn+1 as the

ε -parameter and adopt to the family Fn+1 the ε -cornersquares
of Qβ1 β2...βn

α1 α2...αn ; namely,

Qβ1 β2...βn+
α1 α2...αn+ , Qβ1 β2...βn+

α1 α2...αn− , Q
β1 β2...βn−
α1 α2...αn− , Qβ1 β2...βn−

α1 α2...αn+ ∈ Fn+1 .

Thus Fn+1 consists of 4n+1 cornersquares denoted by
Qβ1 β2...βnβn+1
α1 α2...αnαn+1 . This process continuous indefinitely.
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The size of squares in Fn and their total area
Every member of Fn+1 is a cornersquare of a Q ∈ Fn via the
parameter ε = εn+1 . Let ` denote the sidelength of Q . We
remove from Q its centersquare εQ . Thus each of the remaining
four cornersquares has side-length 1

2 (1− ε)` . For n = 1 this
equals 1

2 (1− ε1) . Hence, by induction, the side-length of squares
in Fn equals 1

2n (1− ε1)(1− ε2) · · · (1− εn) < 1
2n . We have 4n

such squares. This sums up to the total area of the union∣∣∣⋃Fn

∣∣∣ = (1− ε1)2(1− ε2)2 · · · (1− εn)2
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The Cantor set We have a decreasing sequence of compact sets⋃
F1 )

⋃
F2 ) ... )

⋃
Fn... .

Cantor’s Theorem tells us that their intersection is not empty,

C def
==

∞⋂
n−1

(⋃
Fn

)
6= ∅

The measure of this Cantor set is positive.

| C | = lim
n→∞

∣∣∣⋃Fn

∣∣∣ =
∞∏
k=1

(1− εk)2 > 0 (4)

The latter inequality is a consequence of
∑∞

k=1 εk <∞ . Every
point in C is obtained as intersection of exactly one decreasing
sequence of the form

Qβ1
α1

) Qβ1β2
α1α2

) ... ) Qβ1β2...βn
α1α2...αn

...
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Another important lemma

Lemma

Every open set that intersects C contains a square, say Q ∈ Fn

for sufficiently large n which, in turn, contains its centersquare
εnQ ⊂ Q .

Idea: This lemma suggest to consider a monotone mapping
h : Q onto−→ Q whose branch set will materialize in the centersquares.
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A monotone map h : Q onto−→ Q

We let G denote the family of centersquares of all generations.
For every Q ∈ G we have a monotone map hQ : Q onto−→ Q . Recall
that hQ equals the identity map near ∂Q .

Definition

We define the map h : Q onto−→ Q by setting:

h(x) =

{
hQ(x), whenever x ∈ Q ∈ G

x , otherwise.
(5)

1 h ∈ W 1,p(Q,Q) with p > 2 and, as such, is continuous on
Q .

2 For each square (continuum) Q ∈ G the mapping
h : Q onto−→ Q is monotone and h is the identity outside those
continua.

This is enough to conclude that h : Q onto−→ Q is monotone.
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Every point of the Cantor set C belongs to the branch set of h .
Indeed, by Lemma (intersection), any neighborhood of this point
contains a square Q ∈ G in which h = hQ fails to be injective.
Thus the branch set Bh contains the Cantor set C and, therefore,
has positive measure. On the other hand, by the very definition,
h(x) ≡ x on C . Therefore h(Bh) also contains C , so h(Bh) has
positive measure as well.
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