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Variational Nonlinear Elasticity: the basic model

Laws

Observable deformations y∗ (locally) minimize

E (y) := E el(y) + E ext(y).

States (unknowns)

y : Ω→ Rd , the “deformation” of the elastic body (e.g. d = 3);
∇y : Ω→ Rd×d denotes its “deformation gradient”

Data

I Ω ⊂ Rd bounded domain, the “reference configuration”

I W : Rd×d → [0,+∞], which allows us to calculate
the “elastic energy” E el (y) :=

∫
Ω W (∇y(x)) dx

I (conservative) external forces and their potential E ext(y)

I (optional) boundary conditions for y



Variational NLE: the basic model

Minimize

E (y) := E el(y) + E ext(y), E el(y) :=

∫
Ω
W (∇y(x)) dx .

Typical assumptions on W , for all F ∈ Rd×d

I (frame indifference) W (QF ) = W (F ) ∀Q ∈ SO(d)

I (orientation preserving) W (F ) = +∞ iff detF ≤ 0.

I W is continuous, penalizes large strain and compression:

W (F ) ≥ c |F |p + c |detF |−r − C ,

with constants c ,C > 0, p > d , r > 0.

I W is polyconvex, e.g., if d = 3,
W (F ) = h(F , cof F , detF ) with a convex function h.



Variational NLE: A few known results

Minimize

E (y) := E el(y) + E ext(y), E el(y) :=

∫
Ω
W (∇y(x)) dx .

Existence of minimizers

If (*) holds, ∂Ω is Lipschitz, and E ext and the boundary conditions
imposed on y are reasonable:

I E has a global minimizer in y∗ ∈W 1,p (Ball 1977).



Variational NLE: A few known results

Minimize

E (y) := E el(y) + E ext(y), E el(y) :=

∫
Ω
W (∇y(x)) dx .

On local invertibility

For all deformations y with finite energy:

I det∇y > 0 a.e. in Ω and y ∈ C 0(Ω̄;Rd)

I Around a.e. x ∈ Ω, y is a.e. locally invertible
(Fonseca&Gangbo 1995)

I Everywhere local invertibility and uniform lower bound on
det∇y for some non-simple materials (suitable higher order
regularization) (Healey&K. 2009)

I Additional local properties if the energy sufficiently
controls the distortion of ∇y : openness and discreteness
(Villamor&Manfredi 1998; Hencl&Koskela 2014)
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Lavrentiev phenomenon

I A Lavrentiev phenomenon is possible:
infy∈W 1,∞ E (y) > miny∈W 1,p E (y) for a particular example
(Foss&Hrusa&Mizel 2003).
In particular, discretizations with piecewise affine elements can
fail to converge!

I (In principle) avoidable numerically by using non-conforming
elements (Negrón Marrero 1990): Use (y ,F ) instead of
(y ,∇y) while penalizing the difference. The ”good” scaling
regime for the penalization versus the grid size is not explicitly
known though!
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Variational NLE: Global invertibility from the boundary

Minimize

E (y) := E el(y) + E ext(y), E el(y) :=

∫
Ω
W (x ,∇y(x)) dx .

Global invertibility for orientation preserving maps

I Global invertibility (a.e.) can be added as a constraint, the
Ciarlet-Nečas condition (CNc)

Moreover, for all y ∈W 1,p
+ (“+”: det∇y > 0 a.e.), p > d :

I If y = ŷ on ∂Ω for a globally invertible ŷ ∈ C 0(Ω̄;Rd), (i.e.,
y |∂Ω admits a homeomorphic extension) then y is a.e. globally
invertible (Ball 1981).
(Less regularity: Henao&Mora-Corral&Oliva 2021)

I If y |∂Ω is invertible or can be uniformly approximated by such
maps (”y ∈ AIB”) and Ω is “without holes”, then y is
a.e. globally invertible (K. 2020).
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The Ciarlet-Nečas condition and numerics?

The Ciarlet-Nečas condition (CNc) in a discrete setting?

I No computationally feasible projection onto (CNc) is
known
(Partial results for C 0-elements: [Aigerman&Lipman
2013])
Without projection, (CNc) cannot be used as a discrete
constraint!

(CNc)

∫
Ω
|det∇y(x)| dx ≤ |y(Ω)| (⇐⇒ y a.e. injective)



The Ciarlet-Nečas condition and numerics?

(CNc) as a “soft” constraint, via (nonlocal) penalty term?

I [Mielke&Roub́ıček 2016] (e.g.):

ECN-MR
ε (y) :=

1

ε

(∫
Ω
|det∇y(x)| dx − |y(Ω)|

)
Rigorously reproduces (CNc), but not a standard integral
functional. Hard to implement. Expensive and non-smooth.
No surface variant known. Contact relaxes to interpenetration.

I [Bartels&Reiter 2018], [Yu&Brakensiek& Schu-
macher&Crane 2021], etc.: Nonlocal geometric energies
(tangent point, Möbius, etc.). Relatively cheap. Singular, not
”lower order”, force high regularity. Lavrentiev phenomenon?

(CNc)

∫
Ω
|det∇y(x)| dx ≤ |y(Ω)| (⇐⇒ y a.e. injective)
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The Ciarlet-Nečas condition and numerics?

(CNc) as a “soft” constraint, via (nonlocal) penalty term?

I [K.&Valdman 2020]: Lower order double integral term.
Expensive, because (theoretically) active on all of Ω× Ω.
Known to rigorously reproduce (CNc) only if deformations are
at least locally bi-Lipschitz. Lavrentiev phenomenon
otherwise? Rigorous for higher gradient nonlinear elasticity.

(CNc)

∫
Ω
|det∇y(x)| dx ≤ |y(Ω)| (⇐⇒ y a.e. injective)



Towards other penalization terms

Aim

Find other penalty terms ECN
ε (y) realizing (CNc) as a limit.

Must have for all admissible y :

I Γ− lim
ε→0

ECN
ε (y) =

{
0 if and only if y satisfies (CNc),
+∞ otherwise

Nice to have as well:

I ECN
ε (y) is easier and cheaper to compute. Have ECN

ε only
act on (or near) ∂Ω.

I ECN
ε (y) allows smooth version

I ECN
ε (y) =⇒ y globally invertible (even for finite ε > 0!)

I adding ECN
ε does not create additional stable states (?)
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Nonlinear elasticity with controlled distortion

We now consider the nonlinear elastic energy

E el(y) =

∫
Ω
W (∇y) dx with (e.g.) W (F ) := |F |p +

1

(detF )r

with p > d and r > 0 big enough so that for some γ > d − 1,

(
KO(F )

)γ
:=

(
|F |d

detF

)γ
≤ C W (F ) for all F ∈ GL+

d .

Consequences of this control of KO(∇y) by E el(y):

Theorem (Villamor&Manfredi 1998)

Let y ∈W 1,p
+ (Ω;Rd), p > d . If KO(∇y) ∈ Lγ(Ω) for a γ > d − 1,

then y is open and discrete.



Nonlinear elasticity with controlled distortion

We now consider the nonlinear elastic energy

E el(y) =

∫
Ω
W (∇y) dx with (e.g.) W (F ) := |F |p +

1

(detF )r

with p > d and r > 0 big enough so that for some γ > d − 1,

(
KO(F )

)γ
:=

(
|F |d

detF

)γ
≤ C W (F ) for all F ∈ GL+

d .

Consequences of this control of KO(∇y) by E el(y):

Lemma (Grandi&Kruž́ık&Mainini&Stefanelli 2019)

Let y ∈W 1,p
+ (Ω;Rd), p > d , be an open map satisfying (CNc).

Then y is a homeomorphism on Ω.



’Inverse Sobolev–Slobodeck̆ı́ı’ self-repulsion

A new self-repulsion term, with parameters 0 ≤ s < 1, q ≥ 1:

Dδ(y) :=

∫
Uδ

∫
Uδ

|x − x̃ |q

|y(x)− y(x̃)|d+sq
|det∇y(x)| |det∇y(x̃)| dx dx̃

where δ > 0 and Uδ ⊂ Ω is an open δ-neighborhood of ∂Ω in Ω:

{x ∈ Ω | dist (x ; ∂Ω) < δ
2} ⊂ Uδ

Remark (inverse (s, q)-Sobolev-Slobodeck̆ı́ı seminnorm)

If y is a.e.-invertible, a change of variables gives

Dδ(y) =

∫
y(Uδ)

∫
y(Uδ)

∣∣y−1(z)− y−1(z̃)
∣∣q

|z − z̃ |d+sq
dz dz̃

This is the (s, q)-Sobolev-Slobodeck̆ı́ı seminnorm of y−1 on y(Uδ).
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Proposition (K.& Reiter 2022)

Dδ is weakly lower semicontinuous in W 1,p
+ .

Proof: Essentially exploit “separate polyconvexity” for the double
integral: Combine the weak continuity of the determinant with
separate convexity of the integrant in each of the two determinants
(cf. Elbau 2011 for the role of separate convexity).



’Inverse Sobolev–Slobodeck̆ı́ı’ self-repulsion

A new self-repulsion term, with parameters 0 ≤ s < 1, q ≥ 1:

Dδ(y) :=

∫
Uδ

∫
Uδ

|x − x̃ |q

|y(x)− y(x̃)|d+sq
|det∇y(x)| |det∇y(x̃)| dx dx̃

where δ > 0 and Uδ ⊂ Ω is an open δ-neighborhood of ∂Ω in Ω:

{x ∈ Ω | dist (x ; ∂Ω) < δ
2} ⊂ Uδ

Proposition (perfect self-repulsion, K.& Reiter 2022)

If y is an open map and sq ≥ 0, Dδ(y) <∞ implies (Cnc) on Uδ.

Proof: By contradiction; essentially a simple estimate exploiting
the singular denominator of D.



Energy convergence for vanishing self-repulsion

Eε,δ(y) :=

{
E el(y) + εDδ(y) if y ∈W 1,p

+ (Ω,Rd),

+∞ else.

E0(y) :=

{
E el(y) if y ∈W 1,p

+ (Ω,Rd) satisfies (CNc),

+∞ else.

Theorem 3 (K.&Reiter 2022)

Suppose that p > d , 0 ≤ s < 1, q ≥ 1, Ω is a Lipschitz domain
“without holes”, E el controls the distortion as before and

s − d

q
≤ 1− d

σ
, where σ :=

(r + 1)p

r(d − 1) + p
(> d).

Then Eε,δ Gamma-converges to E0 in the weak topology of
W 1,p, as (ε, δ)→ (0, 0) (the scaling regime can be arbitrary!).



Energy convergence for vanishing self-repulsion
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{
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+∞ else.
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Remark (on σ and the assumed inequality)

The assumption

s − d

q
≤ 1− d

σ
, where σ :=

(r + 1)p

r(d − 1) + p
(> d),

is used for an embedding and implies that

DU(y) ≤ C
∥∥y−1

∥∥
W 1,σ(y(U))

if y is invertible and y(U) has Lipschitz boundary.



Energy convergence for vanishing self-repulsion

Eε,δ(y) :=

{
E el(y) + εDδ(y) if y ∈W 1,p

+ (Ω,Rd),

+∞ else.

E0(y) :=

{
E el(y) if y ∈W 1,p

+ (Ω,Rd) satisfies (CNc),

+∞ else.

Remark (recovery by homeomorphisms)

As constructed in the proof, recovery sequences consist of
homeomorphisms on Ω with inverse in W 1,σ which converge
strongly in W 1,p.



Convergence of energies: elements of the proof

Crucial tools for the construction of the recovery sequence:

Lemma (domain shrinking)

Let Ω ⊂ Rd be a bounded Lipschitz domain. Then there exists a
sequence of C∞-diffeomorphisms

Ψj : Ω→ Ψj(Ω) ⊂⊂ Ω

such that for all m ∈ N,

Ψj −→
j→∞

id in Cm(Ω;Rd).

Lemma (composition with domain shrinking is continuous)

For each f ∈W k,r (Ω;Rm), k ∈ N0, 1 ≤ r <∞, m ∈ N,

f ◦Ψj → f in W k,r (Ω;Rm).
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Numerical experiments: symmetric (J. Valdman)

Figure : Initial deformed mesh with red Dirichlet and black possible
non-penetration nodes.



Numerical experiment: symmetric (J. Valdman)

Figure : Deformed mesh with the underlying linear elasticity density.



Numerical experiment: symmetric (J. Valdman)

Figure : Deformed mesh with the underlying non-penetration density
(left) and its magnified part (right).



Numerical experiment 2: asymmetric (J. Valdman)

Figure : Initial deformed mesh with red Dirichlet and black possible
non-penetration nodes.



Numerical experiment 2: asymmetric (J. Valdman)

Figure : Deformed mesh with the underlying linear elasticity density.
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The end: summary and remarks

For (Cnc), we have new penalty terms, acting only on or near the
boundary, with self-repulsive effect.

I They are proven to reproduce (CNc) in the following cases:

(i) linear elasticity, given a local bi-Lipschitz constraint
[K.&Valdman, work in progress] (not discussed in detail here)

(ii) standard nonlinear elasticity, if there is enough energetic
control of the distortion (to obtain openness and discreteness)
[K.&Reiter 2022].

I They are much cheaper to evaluate numerically, especially if
paired with linear elasticity

I They automatically lead to approximation by
homeomorphisms on Ω

I Extensions: Dδ also has a surface variant


	Elasticity: some basics
	Global invertibility as a constraint: The Ciarlet-Necas condition and associated penalization terms
	Injectivity via self-replusion in nonlinear elasticity
	Numerical experiments
	Summary

