Analysis in Tatra, Małe Ciche, September 2022

Injective elastic deformations via vanishing self-repulsion

Stefan Krömer

ÚTIA, Czech Academy of Sciences, Prague

joint work: Philipp Reiter (TU Chemnitz) Jan Valdman (ÚTIA CAS, Prague)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Elasticity: some basics

Global invertibility as a constraint: The Ciarlet-Nečas condition and associated penalization terms

Injectivity via self-replusion in nonlinear elasticity

Numerical experiments

Summary

Elasticity: some basics

Global invertibility as a constraint: The Ciarlet-Nečas condition and associated penalization terms

Injectivity via self-replusion in nonlinear elasticity

Numerical experiments

Summary

Variational Nonlinear Elasticity: the basic model

Laws

Observable deformations y^* (locally) **minimize** $E(y) := E^{el}(y) + E^{ext}(y).$

States (unknowns)

 $y: \Omega \to \mathbb{R}^{d}$, the "deformation" of the elastic body (e.g. d = 3); $\nabla y: \Omega \to \mathbb{R}^{d \times d}$ denotes its "deformation gradient"

Data

- ▶ $\mathbf{\Omega} \subset \mathbb{R}^d$ bounded domain, the "reference configuration"
- ► $W : \mathbb{R}^{d \times d} \to [0, +\infty]$, which allows us to calculate the "elastic energy" $E^{el}(y) := \int_{\Omega} W(\nabla y(x)) dx$
- ► (conservative) external forces and their potential **E**^{ext}(**y**)
- (optional) boundary conditions for y

Variational NLE: the basic model

Minimize

$$E(y) := E^{el}(y) + E^{ext}(y), \quad E^{el}(y) := \int_{\Omega} W(\nabla y(x)) \, dx.$$

Typical assumptions on W, for all $F \in \mathbb{R}^{d \times d}$

- (frame indifference) $W(QF) = W(F) \quad \forall Q \in SO(d)$
- (orientation preserving) $W(F) = +\infty$ iff det $F \leq 0$.
- ► *W* is continuous, **penalizes large strain and compression**: $W(F) \ge c |F|^{p} + c |\det F|^{-r} - C,$

with constants c, C > 0, p > d, r > 0.

W is polyconvex, e.g., if d = 3, W(F) = h(F, cof F, det F) with a convex function h.

Minimize

$$E(y) := E^{el}(y) + E^{ext}(y), \quad E^{el}(y) := \int_{\Omega} W(\nabla y(x)) \, dx.$$

Existence of minimizers

If (*) holds, $\partial \Omega$ is Lipschitz, and E^{ext} and the boundary conditions imposed on y are reasonable:

• *E* has a global minimizer in $y^* \in W^{1,p}$ (BALL 1977).

Minimize

$$E(y) := E^{el}(y) + E^{ext}(y), \quad E^{el}(y) := \int_{\Omega} W(\nabla y(x)) \, dx.$$

On local invertibility

For all deformations y with finite energy:

- det $\nabla y > 0$ a.e. in Ω and $y \in C^0(\overline{\Omega}; \mathbb{R}^d)$
- ► Around a.e. $x \in \Omega$, y is a.e. locally invertible (FONSECA&GANGBO 1995)

Minimize

$$E(y) := E^{el}(y) + E^{ext}(y), \quad E^{el}(y) := \int_{\Omega} W(\nabla y(x)) \, dx.$$

On local invertibility

For all deformations y with finite energy:

- det abla y > 0 a.e. in Ω and $y \in C^0(\overline{\Omega}; \mathbb{R}^d)$
- ► Around a.e. $x \in \Omega$, y is a.e. locally invertible (FONSECA&GANGBO 1995)
- ► Everywhere local invertibility and uniform lower bound on det ∇y for some non-simple materials (suitable higher order regularization) (HEALEY&K. 2009)

Minimize

$$E(y) := E^{el}(y) + E^{ext}(y), \quad E^{el}(y) := \int_{\Omega} W(\nabla y(x)) \, dx.$$

On local invertibility

For all deformations y with finite energy:

- det abla y > 0 a.e. in Ω and $y \in C^0(\overline{\Omega}; \mathbb{R}^d)$
- ► Around a.e. $x \in \Omega$, y is a.e. locally invertible (FONSECA&GANGBO 1995)
- ► Everywhere local invertibility and uniform lower bound on det ∇y for some non-simple materials (suitable higher order regularization) (HEALEY&K. 2009)
- ► Additional local properties if the energy sufficiently controls the distortion of ∇y: openness and discreteness (VILLAMOR&MANFREDI 1998; HENCL&KOSKELA 2014)

Minimize

$$E(y) := E^{el}(y) + E^{ext}(y), \quad E^{el}(y) := \int_{\Omega} W(\nabla y(x)) \, dx.$$

Lavrentiev phenomenon

A Lavrentiev phenomenon is possible:

 $\inf_{y \in W^{1,\infty}} E(y) > \min_{y \in W^{1,p}} E(y) \text{ for a particular example}$ (FOSS&HRUSA&MIZEL 2003).

In particular, discretizations with piecewise affine elements can fail to converge!

In principle) avoidable numerically by using non-conforming elements (NEGRÓN MARRERO 1990): Use (y, F) instead of (y, ∇y) while penalizing the difference. The "good" scaling regime for the penalization versus the grid size is not explicitly known though!

Variational NLE: Global invertibility from the boundary

Minimize

$$E(y) := E^{el}(y) + E^{ext}(y), \quad E^{el}(y) := \int_{\Omega} W(x, \nabla y(x)) \, dx.$$

Global invertibility for orientation preserving maps

 Global invertibility (a.e.) can be added as a constraint, the Ciarlet-Nečas condition (CNc)

Variational NLE: Global invertibility from the boundary

Minimize

$$E(y) := E^{el}(y) + E^{ext}(y), \quad E^{el}(y) := \int_{\Omega} W(x, \nabla y(x)) \, dx.$$

Global invertibility for orientation preserving maps

 Global invertibility (a.e.) can be added as a constraint, the Ciarlet-Nečas condition (CNc)

Moreover, for all $y \in W^{1,p}_+$ ("+": det $\nabla y > 0$ a.e.), p > d:

If y = ŷ on ∂Ω for a globally invertible ŷ ∈ C⁰(Ω̄; ℝ^d), (i.e., y|_{∂Ω} admits a homeomorphic extension) then y is a.e. globally invertible (BALL 1981).

(Less regularity: HENAO&MORA-CORRAL&OLIVA 2021)

Variational NLE: Global invertibility from the boundary

Minimize

$$E(y) := E^{el}(y) + E^{ext}(y), \quad E^{el}(y) := \int_{\Omega} W(x, \nabla y(x)) \, dx.$$

Global invertibility for orientation preserving maps

 Global invertibility (a.e.) can be added as a constraint, the Ciarlet-Nečas condition (CNc)

Moreover, for all $y \in W^{1,p}_+$ ("+": det $\nabla y > 0$ a.e.), p > d:

If y = ŷ on ∂Ω for a globally invertible ŷ ∈ C⁰(Ω̄; ℝ^d), (i.e., y|_{∂Ω} admits a homeomorphic extension) then y is a.e. globally invertible (BALL 1981).

(Less regularity: HENAO&MORA-CORRAL&OLIVA 2021)

If y|_{∂Ω} is invertible or can be uniformly approximated by such maps ("y ∈ AIB") and Ω is "without holes", then y is a.e. globally invertible (K. 2020).

Elasticity: some basics

Global invertibility as a constraint: The Ciarlet-Nečas condition and associated penalization terms

Injectivity via self-replusion in nonlinear elasticity

Numerical experiments

Summary

The Ciarlet-Nečas condition (CNc) in a discrete setting?

 No computationally feasible projection onto (CNc) is known
 (Partial results for C⁰-elements: [AIGERMAN&LIPMAN

2013])

Without projection, (CNc) cannot be used as a discrete constraint!

$$(\mathsf{CNc}) \quad \int_{\Omega} |\mathsf{det}\, \nabla y(x)| \, dx \leq |y(\Omega)| \quad (\Longleftrightarrow y \text{ a.e. injective})$$

(CNc) as a "soft" constraint, via (nonlocal) penalty term?

► [MIELKE&ROUBÍČEK 2016] (e.g.): $E_{\varepsilon}^{\mathsf{CN-MR}}(y) := \frac{1}{\varepsilon} \left(\int_{\Omega} |\det \nabla y(x)| \, dx - |y(\Omega)| \right)$

Rigorously reproduces (CNc), but not a standard integral functional. Hard to implement. Expensive and non-smooth. No surface variant known. Contact relaxes to interpenetration.

[BARTELS&REITER 2018], [Yu&BRAKENSIEK& SCHU-MACHER&CRANE 2021], etc.: Nonlocal geometric energies (tangent point, Möbius, etc.). Relatively cheap. Singular, not "lower order", force high regularity. Lavrentiev phenomenon?

$$(\mathsf{CNc}) \quad \int_{\Omega} |\det \nabla y(x)| \, dx \leq |y(\Omega)| \quad (\Longleftrightarrow y \text{ a.e. injective})$$

(CNc) as a "soft" constraint, via (nonlocal) penalty term?

▶ [Mielke&Roubíček 2016] (e.g.):

$$E^{\mathsf{CN} ext{-MR}}_arepsilon(y) := rac{1}{arepsilon} \left(\int_\Omega \left| \det
abla y(x)
ight| \, dx - \left| y(\Omega)
ight|
ight)$$

Rigorously reproduces (CNc), but not a standard integral functional. Hard to implement. Expensive and non-smooth. No surface variant known. Contact relaxes to interpenetration.

[BARTELS&REITER 2018], [Yu&BRAKENSIEK& SCHU-MACHER&CRANE 2021], etc.: Nonlocal geometric energies (tangent point, Möbius, etc.). Relatively cheap. Singular, not "lower order", force high regularity. Lavrentiev phenomenon?

(CNc)
$$\int_{\Omega} |\det \nabla y(x)| \, dx \leq |y(\Omega)| \quad (\iff y \text{ a.e. injective})$$

(CNc) as a "soft" constraint, via (nonlocal) penalty term?

[K.&VALDMAN 2020]: Lower order double integral term.
 Expensive, because (theoretically) active on all of Ω × Ω.
 Known to rigorously reproduce (CNc) only if deformations are at least locally bi-Lipschitz. Lavrentiev phenomenon otherwise? Rigorous for higher gradient nonlinear elasticity.

$$(\mathsf{CNc}) \quad \int_{\Omega} |\mathsf{det}\, \nabla y(x)| \,\, dx \leq |y(\Omega)| \quad (\Longleftrightarrow y \,\, \mathsf{a.e.} \,\, \mathsf{injective})$$

A D F A B F A B F A B F

ъ

Aim

Find other penalty terms $E_{\varepsilon}^{CN}(y)$ realizing (CNc) as a limit.

Must have for all admissible y:

$$\blacktriangleright \ \ \Gamma - \lim_{\varepsilon \to 0} E_{\varepsilon}^{CN}(y) = \begin{cases} 0 \\ +\infty \end{cases}$$

if and only if *y* satisfies (CNc), otherwise

Nice to have as well:

- ► $E_{\varepsilon}^{CN}(y)$ is easier and cheaper to compute. Have E_{ε}^{CN} only act on (or near) $\partial \Omega$.
- $E_{\varepsilon}^{CN}(y)$ allows smooth version
- $E_{\varepsilon}^{CN}(y) \Longrightarrow y$ globally invertible (even for finite $\varepsilon > 0!$)
- adding E_{ε}^{CN} does not create additional stable states (?)

Elasticity: some basics

Global invertibility as a constraint: The Ciarlet-Nečas condition and associated penalization terms

Injectivity via self-replusion in nonlinear elasticity

Numerical experiments

Summary

Nonlinear elasticity with controlled distortion

We now consider the nonlinear elastic energy

$$E^{el}(y) = \int_{\Omega} W(\nabla y) \, dx$$
 with (e.g.) $W(F) := |F|^p + \frac{1}{(\det F)^r}$

with p > d and r > 0 big enough so that for some $\gamma > d - 1$,

$$\left(K^{\mathcal{O}}(F)\right)^{\gamma} := \left(\frac{|F|^{d}}{\det F}\right)^{\gamma} \leq C W(F) \quad \text{for all } F \in GL_{d}^{+}.$$

Consequences of this **control of** $K^{0}(\nabla y)$ by $E^{el}(y)$:

Theorem (VILLAMOR&MANFREDI 1998)

Let $y \in W^{1,p}_+(\Omega; \mathbb{R}^d)$, p > d. If $K^O(\nabla y) \in L^{\gamma}(\Omega)$ for a $\gamma > d - 1$, then y is **open** and discrete.

Nonlinear elasticity with controlled distortion

We now consider the nonlinear elastic energy

$$E^{el}(y) = \int_{\Omega} W(\nabla y) \, dx$$
 with (e.g.) $W(F) := |F|^p + \frac{1}{(\det F)^r}$

with p > d and r > 0 big enough so that for some $\gamma > d - 1$,

$$\left(K^{O}(F)\right)^{\gamma} := \left(\frac{|F|^{d}}{\det F}\right)^{\gamma} \leq C W(F) \quad \text{for all } F \in GL_{d}^{+}.$$

Consequences of this control of $K^{O}(\nabla y)$ by $E^{el}(y)$:

Lemma (GRANDI&KRUŽÍK&MAININI&STEFANELLI 2019) Let $y \in W^{1,p}_+(\Omega; \mathbb{R}^d)$, p > d, be an **open** map satisfying (*CNc*). Then **y** is a homeomorphism on Ω .

'Inverse Sobolev-Slobodeckĭí' self-repulsion

A new self-repulsion term, with parameters $0 \le s < 1$, $q \ge 1$:

$$\mathcal{D}_{\delta}(y) := \int_{U_{\delta}} \int_{U_{\delta}} \frac{|x - \tilde{x}|^{q}}{|y(x) - y(\tilde{x})|^{d + sq}} \left| \det \nabla y(x) \right| \left| \det \nabla y(\tilde{x}) \right| \, dx \, d\tilde{x}$$

where $\delta > 0$ and $U_{\delta} \subset \Omega$ is an open δ -neighborhood of $\partial \Omega$ in Ω :

$$\{x\in \Omega\mid {\sf dist}\,(x;\partial\Omega)<rac{\delta}{2}\}\subset U_{\delta}$$

Remark (inverse (s, q)-Sobolev-Slobodeckĭí seminnorm)

If y is a.e.-invertible, a change of variables gives

$$\mathcal{D}_{\delta}(y) = \int_{y(U_{\delta})} \int_{y(U_{\delta})} rac{\left|y^{-1}(z) - y^{-1}(\widetilde{z})
ight|^q}{\left|z - \widetilde{z}
ight|^{d+sq}} \, dz \, d\widetilde{z}$$

This is the (s, q)-Sobolev-Slobodeckií seminnorm of y^{-1} on $y(U_{\delta})$.

'Inverse Sobolev–Slobodeckĭí' self-repulsion

A new self-repulsion term, with parameters $0 \le s < 1$, $q \ge 1$:

$$\mathcal{D}_{\delta}(y) := \int_{U_{\delta}} \int_{U_{\delta}} \frac{|x - \tilde{x}|^{q}}{|y(x) - y(\tilde{x})|^{d + sq}} \left| \det \nabla y(x) \right| \left| \det \nabla y(\tilde{x}) \right| \, dx \, d\tilde{x}$$

where $\delta > 0$ and $U_{\delta} \subset \Omega$ is an open δ -neighborhood of $\partial \Omega$ in Ω :

$$\{x\in \Omega\mid {\sf dist}\,(x;\partial\Omega)<rac{\delta}{2}\}\subset U_{\delta}$$

Proposition (K.& Reiter 2022)

 \mathcal{D}_{δ} is weakly lower semicontinuous in $W^{1,p}_+$.

Proof: Essentially exploit "separate polyconvexity" for the double integral: Combine the weak continuity of the determinant with separate convexity of the integrant in each of the two determinants (cf. ELBAU 2011 for the role of separate convexity).

'Inverse Sobolev-Slobodeckĭí' self-repulsion

A new self-repulsion term, with parameters $0 \le s < 1$, $q \ge 1$:

$$\mathcal{D}_{\delta}(y) := \int_{U_{\delta}} \int_{U_{\delta}} \frac{|x - \tilde{x}|^{q}}{|y(x) - y(\tilde{x})|^{d + sq}} \left| \det \nabla y(x) \right| \left| \det \nabla y(\tilde{x}) \right| \, dx \, d\tilde{x}$$

where $\delta > 0$ and $U_{\delta} \subset \Omega$ is an open δ -neighborhood of $\partial \Omega$ in Ω :

$$\{x \in \Omega \mid \mathsf{dist}(x; \partial \Omega) < rac{\delta}{2}\} \subset U_{\delta}$$

Proposition (perfect self-repulsion, K.& REITER 2022)

If y is an open map and $sq \ge 0$, $\mathcal{D}_{\delta}(y) < \infty$ implies (Cnc) on U_{δ} .

Proof: By contradiction; essentially a simple estimate exploiting the singular denominator of \mathcal{D} .

Energy convergence for vanishing self-repulsion

$$E_{\varepsilon,\delta}(y) := \begin{cases} E^{el}(y) + \varepsilon \mathcal{D}_{\delta}(y) & \text{if } y \in W^{1,p}_{+}(\Omega, \mathbb{R}^d), \\ +\infty & \text{else.} \end{cases}$$
$$E_0(y) := \begin{cases} E^{el}(y) & \text{if } y \in W^{1,p}_{+}(\Omega, \mathbb{R}^d) \text{ satisfies (CNc)}, \\ +\infty & \text{else.} \end{cases}$$

Theorem 3 (K.&REITER 2022)

Suppose that p > d, $0 \le s < 1$, $q \ge 1$, Ω is a Lipschitz domain "without holes", E^{el} controls the distortion as before and

$$s-rac{d}{q}\leq 1-rac{d}{\sigma}, \quad ext{where } \sigma:=rac{(r+1)p}{r(d-1)+p}(>d).$$

Then $E_{\varepsilon,\delta}$ Gamma-converges to E_0 in the weak topology of $W^{1,p}$, as $(\varepsilon, \delta) \to (0,0)$ (the scaling regime can be arbitrary!).

Energy convergence for vanishing self-repulsion

$$E_{arepsilon,\delta}(y) := egin{cases} E^{el}(y) + arepsilon \mathcal{D}_{\delta}(y) & ext{if } y \in W^{1,p}_+(\Omega, \mathbb{R}^d), \ +\infty & ext{else.} \end{cases}$$
 $E_0(y) := egin{cases} E^{el}(y) & ext{if } y \in W^{1,p}_+(\Omega, \mathbb{R}^d) ext{ satisfies (CNc)}, \ +\infty & ext{else.} \end{cases}$

Remark (on σ and the assumed inequality)

The assumption

$$s-rac{d}{q}\leq 1-rac{d}{\sigma}, \hspace{1em} ext{where} \hspace{1em} \sigma:=rac{(r+1)p}{r(d-1)+p}(>d),$$

is used for an embedding and implies that

$$\mathcal{D}_U(y) \leq C \left\| y^{-1} \right\|_{W^{1,\sigma}(y(U))}$$

if y is invertible and y(U) has Lipschitz boundary.

Energy convergence for vanishing self-repulsion

$$E_{arepsilon,\delta}(y) := egin{cases} E^{el}(y) + arepsilon \mathcal{D}_{\delta}(y) & ext{if } y \in W^{1,p}_+(\Omega, \mathbb{R}^d), \ +\infty & ext{else.} \end{cases}$$
 $E_0(y) := egin{cases} E^{el}(y) & ext{if } y \in W^{1,p}_+(\Omega, \mathbb{R}^d) ext{ satisfies (CNc)}, \ +\infty & ext{else.} \end{cases}$

Remark (recovery by homeomorphisms)

As constructed in the proof, recovery sequences consist of homeomorphisms on $\overline{\Omega}$ with inverse in $W^{1,\sigma}$ which converge strongly in $W^{1,p}$.

Convergence of energies: elements of the proof

Crucial tools for the construction of the recovery sequence:

Lemma (domain shrinking)

Let $\Omega \subset \mathbb{R}^d$ be a bounded Lipschitz domain. Then there exists a sequence of C^∞ -diffeomorphisms

$$\Psi_j:\overline{\Omega} o \Psi_j(\overline{\Omega})\subset\subset \Omega$$

such that for all $m \in \mathbb{N}$,

$$\Psi_j \underset{j \to \infty}{\longrightarrow}$$
id in $C^m(\overline{\Omega}; \mathbb{R}^d).$

Lemma (composition with domain shrinking is continuous) For each $f \in W^{k,r}(\Omega; \mathbb{R}^m)$, $k \in \mathbb{N}_0$, $1 \le r < \infty$, $m \in \mathbb{N}$, $f \circ \Psi_j \to f$ in $W^{k,r}(\Omega; \mathbb{R}^m)$. Elasticity: some basics

Global invertibility as a constraint: The Ciarlet-Nečas condition and associated penalization terms

Injectivity via self-replusion in nonlinear elasticity

Numerical experiments

Summary

Numerical experiments: symmetric (J. Valdman)

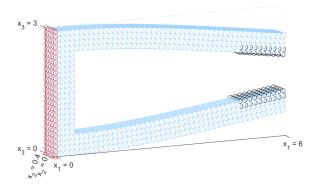


Figure : Initial deformed mesh with red Dirichlet and black possible non-penetration nodes.

・ロト ・聞ト ・ヨト ・ヨト

э

Numerical experiment: symmetric (J. Valdman)

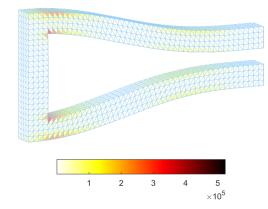


Figure : Deformed mesh with the underlying linear elasticity density.

・ロト ・聞ト ・ヨト ・ヨト

э

Numerical experiment: symmetric (J. Valdman)

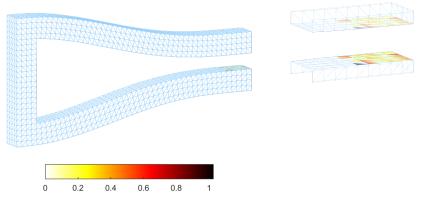


Figure : Deformed mesh with the underlying non-penetration density (left) and its magnified part (right).

ъ

イロト イポト イヨト イヨト

Numerical experiment 2: asymmetric (J. Valdman)

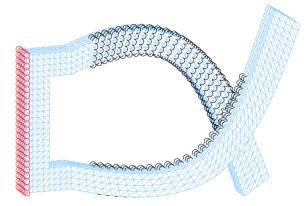


Figure : Initial deformed mesh with red Dirichlet and black possible non-penetration nodes.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ъ

Numerical experiment 2: asymmetric (J. Valdman)

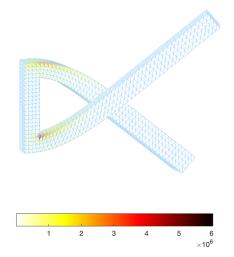


Figure : Deformed mesh with the underlying linear elasticity density.

(日) (同) (日) (日)

Numerical experiment 2: asymmetric (J. Valdman)

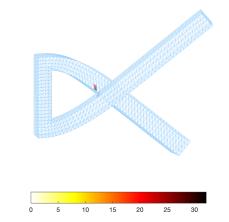


Figure : Deformed mesh with the underlying non-penetration density

(日)、

ъ

Elasticity: some basics

Global invertibility as a constraint: The Ciarlet-Nečas condition and associated penalization terms

Injectivity via self-replusion in nonlinear elasticity

Numerical experiments

Summary

For (Cnc), we have new penalty terms, acting only on or near the boundary, with self-repulsive effect.

- ► They are proven to reproduce (CNc) in the following cases:
 - (i) linear elasticity, given a local bi-Lipschitz constraint [K.&Valdman, work in progress] (not discussed in detail here)
 - (ii) standard nonlinear elasticity, if there is enough energetic control of the distortion (to obtain openness and discreteness) [K.&Reiter 2022].
- They are much cheaper to evaluate numerically, especially if paired with linear elasticity
- They automatically lead to approximation by homeomorphisms on Ω
- Extensions: \mathcal{D}_{δ} also has a surface variant