On a Class of Variational Inequalities

Stanislaw Migórski

Jagiellonian University, Krakow, Poland

A joint work with Dong-ling Cai (Chengdu)

Outline

- Variational-hemivariational inequalities in reflexive Banach spaces
- Problem formulation and particular cases
- Existence and uniqueness result
- Continuous dependence result
- Existence via a penalty method
- A generalization: differential variational-hemivariational inequality with history-dependent operators
- Application: a quasistatic unilateral contact problem for viscoplastic material with friction and a nonsmooth multivalued contact condition

Part I

Variational-hemivariational inequalities in reflexive Banach spaces

Problem formulation

Let $\left(X,\|\cdot\|_{X}\right)$ be a reflexive Banach space and $K \subset X$ be a set. Given an operator $A: X \rightarrow X^{*}$, functions $\varphi: K \times K \rightarrow \mathbb{R}$, and $j: X \rightarrow \mathbb{R}$, we consider the following problem.

Problem (1)

Find an element $u \in K$ such that

$$
\begin{aligned}
\langle A u, v-u\rangle & +\varphi(u, v)-\varphi(u, u)+j^{0}(u ; v-u) \\
& \geq\langle f, v-u\rangle \text { for all } v \in K .
\end{aligned}
$$

The function $\varphi(u, \cdot)$ is assumed to be convex and the function j is locally Lipschitz and, in general, nonconvex. For this reason, inequality in Problem (1) is called a quasi variational-hemivariational inequality.

Motivation

The motivation to study Problem (1) comes from the facts:

- various problems considered in the literature can be formulated as Problem (1),
- many problems in mechanics can be formulated in the weak form as Problem (1).

Mathematical tool: convex subdifferential

Let E be a Banach space and E^{*} be its dual.

Definition (convex subdifferential)

Let $\varphi: E \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex function. The (convex) subdifferential of φ at x, and is defined by

$$
\partial \varphi(x)=\left\{x^{*} \in E^{*} \mid \varphi(v) \geq \varphi(x)+\left\langle x^{*}, v-x\right\rangle_{E^{*} \times E} \text { for all } v \in E\right\} .
$$

Sometimes we refer to $\partial \varphi$ as the subdifferential of φ in the sense of convex analysis. Observe that if $\varphi(x)=+\infty$, then $\partial \varphi(x)=\emptyset$.

The Clarke subgradient

Definition (Clarke subgradient, 1983)

Let $h: E \rightarrow \mathbb{R}$ be a locally Lipschitz function on a Banach space E.

- The generalized directional derivative of h at $x \in E$ in the direction $v \in E$ is defined by

$$
h^{0}(x ; v)=\limsup _{y \rightarrow x, t \downarrow 0} \frac{h(y+t v)-h(y)}{t}
$$

- The generalized subgradient of h at x is given by

$$
\partial h(x)=\left\{\zeta \in E^{*} \mid h^{0}(x ; v) \geq\langle\zeta, v\rangle_{E^{*} \times E} \text { for all } v \in E\right\} .
$$

A locally Lipschitz function h is called regular (in the sense of Clarke) at $x \in E$ if for all $v \in E$ the one-sided directional derivative $h^{\prime}(x ; v)$ exists and satisfies $h^{0}(x ; v)=h^{\prime}(x ; v)$ for all $v \in E$.

Particular cases

1. For $j \equiv 0$, Problem (1) reduces to the elliptic quasivariational inequality of the first kind of the form

$$
u \in K, \quad\langle A u, v-u\rangle+\varphi(u, v)-\varphi(u, u) \geq\langle f, v-u\rangle \text { for all } v \in K
$$

studied, for example, in the book
M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series 398, Cambridge University Press, 2012.

Particular cases

2. For $j \equiv 0$ and $K=X$, Problem (1) reduces to the elliptic quasivariational inequality of the second kind of the form

$$
u \in X, \quad\langle A u, v-u\rangle+\varphi(u, v)-\varphi(u, u) \geq\langle f, v-u\rangle \text { for all } v \in X
$$

considered, for example, in the book
M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series 398, Cambridge University Press, 2012.

Particular cases

3. For $j \equiv 0$ and $\varphi(u, v)=\varphi(v)$, Problem (1) takes the form of the elliptic variational inequality of the first kind of the form

$$
u \in K, \quad\langle A u, v-u\rangle+\varphi(v)-\varphi(u) \geq\langle f, v-u\rangle \text { for all } v \in K
$$

treated, for instance, in
J.L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-519.

Particular cases

4. For $j \equiv 0, K=X$ and $\varphi(u, v)=\varphi(v)$, Problem (1) reduces to the elliptic variational inequality of the second kind of the form

$$
u \in X, \quad\langle A u, v-u\rangle+\varphi(v)-\varphi(u) \geq\langle f, v-u\rangle \text { for all } v \in X
$$

studied, for instance, in
H. Brézis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), 115-175.
J.L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-519.
M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series 398, Cambridge University Press, 2012.

Particular cases

5. For $j \equiv 0$ and $\varphi \equiv 0$, Problem (1) reduces to the elliptic variational inequality of the form

$$
u \in K, \quad\langle A u, v-u\rangle \geq\langle f, v-u\rangle \text { for all } v \in K
$$

considered, for instance, in
H. Brézis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), 115-175.
F.E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780-785.

Particular cases

6. For $\varphi \equiv 0, K=X$, from Problem (1), we obtain the elliptic hemivariational inequality of the form

$$
u \in X, \quad\langle A u, v\rangle+j^{0}(u ; v) \geq\langle f, v\rangle \text { for all } v \in X
$$

investigated, for instance, in
Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1995.
S. Migorski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013.

Particular cases

7. For $j \equiv 0, \varphi \equiv 0$ and $K=X$, Problem (1) reduces to the elliptic equation

$$
u \in X, A u=f
$$

Particular cases

8. For $K=X=V$ and $\varphi(u, v)=\int_{\Gamma}(F u) \theta(\gamma v) d \Gamma$ for $u, v \in V$, Problem (1) reduces to: find $u \in V$ such that

$$
\begin{aligned}
& \langle A u, v-u\rangle+\int_{\Gamma}(F u)(\theta(\gamma v)-\theta(\gamma u)) d \Gamma \\
& \quad+j^{0}(u ; v-u) \geq\langle f, v-u\rangle \quad \text { for all } v \in V
\end{aligned}
$$

and it was studied in
W. Han, S. Migórski, M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM Journal of Mathematical Analysis 46 (2014), 3891-3912. Here $\Gamma \subseteq \partial \Omega$ is a measurable part of the boundary of an open bounded subset Ω of \mathbb{R}^{d}, V is a closed subspace of $H^{1}\left(\Omega ; \mathbb{R}^{s}\right), F: V \rightarrow L^{2}(\Gamma)$ and $\theta: \mathbb{R}^{s} \rightarrow \mathbb{R}$ are Lipschitz continuous $F v \geq 0$ for all $v \in V, \theta$ is convex, and $\gamma: V \rightarrow L^{2}\left(\Gamma ; \mathbb{R}^{s}\right)$ denotes the trace operator.

Hypotheses on the data of Problem (1)

$H(K): \quad K$ is a nonempty, closed and convex subset of X.
$H(f): \quad f \in X^{*}$.
$H(A)$:

A: $X \rightarrow X^{*}$ is such that
(a) it is pseudomonotone : it is bounded, and $u_{n} \rightarrow u$ weakly in X with $\limsup \left\langle A u_{n}, u_{n}-u\right\rangle \leq 0$ imply $\lim \left\langle A u_{n}, u_{n}-u\right\rangle=0$ and $A u_{n} \rightarrow A u$ weakly in X^{*}.
(b) there exist $\alpha_{A}>0, \beta, \gamma \in \mathbb{R}$ and $u_{0} \in K$ such that

$$
\left\langle A v, v-u_{0}\right\rangle \geq \alpha_{A}\|v\|_{X}^{2}-\beta\|v\|_{X}-\gamma \text { for all } v \in X .
$$

(c) strongly monotone, i.e., there exists $m_{A}>0$ such that

$$
\left\langle A v_{1}-A v_{2}, v_{1}-v_{2}\right\rangle \geq m_{A}\left\|v_{1}-v_{2}\right\|_{X}^{2} \text { for all } v_{1}, v_{2} \in X .
$$

Hypothesis $H(\varphi)$

$\int: K \times K \rightarrow \mathbb{R}$ is such that
(a) $\varphi(\eta, \cdot): K \rightarrow \mathbb{R}$ is convex and lower semicontinuous on K, for all $\eta \in K$.
(b) there exists $\alpha_{\varphi}>0$ such that

$$
\begin{gathered}
\varphi\left(\eta_{1}, v_{2}\right)-\varphi\left(\eta_{1}, v_{1}\right)+\varphi\left(\eta_{2}, v_{1}\right)-\varphi\left(\eta_{2}, v_{2}\right) \\
\leq \alpha_{\varphi}\left\|\eta_{1}-\eta_{2}\right\| x\left\|v_{1}-v_{2}\right\|_{x}
\end{gathered}
$$

for all $\eta_{1}, \eta_{2}, v_{1}, v_{2} \in K$.

Hypothesis $H(j)$

$(j: X \rightarrow \mathbb{R}$ is such that
(a) j is locally Lipschitz.
(b) $\|\partial j(v)\|_{X^{*}} \leq c_{0}+c_{1}\|v\|_{X}$ for all $v \in X$ with $c_{0}, c_{1} \geq 0$.
(c) there exists $\alpha_{j} \geq 0$ such that

$$
j^{0}\left(v_{1} ; v_{2}-v_{1}\right)+j^{0}\left(v_{2} ; v_{1}-v_{2}\right) \leq \alpha_{j}\left\|v_{1}-v_{2}\right\|_{X}^{2}
$$ for all $v_{1}, v_{2} \in X$.

Existence and uniqueness result

Theorem (2)

Assume $H(K), H(f), H(A), H(\varphi), H(j)$ and, in addition, assume the smallness conditions

$$
\begin{aligned}
& \alpha_{\varphi}+\alpha_{j}<m_{A} \\
& \alpha_{j}<\alpha_{A}
\end{aligned}
$$

Then, Problem (1) has a unique solution $u \in K$.

Remark on hypothesis $H(j)$

- If $j: X \rightarrow \mathbb{R}$ is a locally Lipschitz function, then hypothesis $H(j)(c)$:

$$
j^{0}\left(v_{1} ; v_{2}-v_{1}\right)+j^{0}\left(v_{2} ; v_{1}-v_{2}\right) \leq \alpha_{j}\left\|v_{1}-v_{2}\right\|_{X}^{2} \text { for all } v_{1}, v_{2} \in X
$$

with $\alpha_{j} \geq 0$, is equivalent to

$$
\begin{equation*}
\left\langle\partial j\left(v_{1}\right)-\partial j\left(v_{2}\right), v_{1}-v_{2}\right\rangle \geq-\alpha_{j}\left\|v_{1}-v_{2}\right\|_{X}^{2} \text { for all } v_{1}, v_{2} \in X \tag{1}
\end{equation*}
$$

The latter is called the relaxed monotonicity condition.

- Note also that if $j: X \rightarrow \mathbb{R}$ is a convex function, then $H(j)(c)$ or, equivalently, condition (1) always holds since it reduces to the monotonicity of the (convex) subdifferential, i.e., $\alpha_{j}=0$.

Remark on $H(j)$

- A convex and continuous function $f: X \rightarrow \mathbb{R}$ is locally Lipschitz. More generally, a convex function $f: X \rightarrow \mathbb{R}$, which is bounded above on a neighborhood of some point is locally Lipschitz (see Clarke).
- A function $f: X \rightarrow \mathbb{R}$, which is Lipschitz continuous on bounded subsets of X is locally Lipschitz. The converse assertion is not generally true.
F. H. Clarke, Optimization and Nonsmooth Analysis, Society for Industrial and Applied Mathematics, Philadelphia, PA (1990).

Continuous dependence result for Problem (1)

Let $\rho>0$ be a parameter. Consider the following version of Problem (1).

Problem (1_{ρ})

Find $u_{\rho} \in K$ such that

$$
\begin{aligned}
\left\langle A u_{\rho}, v-u_{\rho}\right\rangle & +\varphi_{\rho}\left(u_{\rho}, v\right)-\varphi_{\rho}\left(u_{\rho}, u_{\rho}\right)+j_{\rho}^{0}\left(u_{\rho} ; v-u_{\rho}\right) \\
& \geq\left\langle f_{\rho}, v-u_{\rho}\right\rangle \text { for all } v \in K
\end{aligned}
$$

Consider the functions φ_{ρ}, j_{ρ} and f_{ρ} which satisfy hypotheses $H(\varphi), H(j)$ and $H(f)$ with constants $\alpha_{\varphi_{\rho}}$ and $\alpha_{j_{\rho}}$, respectively. Assume that there exists $m_{0} \in \mathbb{R}$ such that $\alpha_{\varphi_{\rho}}+\alpha_{j_{\rho}} \leq m_{0}<m_{A}$ for all $\rho>0$, and $\alpha_{j_{\rho}}<\alpha_{A}$ for all $\rho>0$.

Theorem (2) guarantees that Problem $\left(1_{\rho}\right)$ has a unique solution $u_{\rho} \in K$, for each $\rho>0$.

Continuous dependence result for Problem (1)

We now consider the following hypotheses.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { There exists a function } G: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \text {and } g \in \mathbb{R}_{+} \text {such that } \\
\varphi(\eta, v)-\varphi(\eta, \eta)-\varphi_{\rho}(\eta, v)+\varphi_{\rho}(\eta, \eta) \leq G(\rho)\left(\|\eta\|_{X}+g\right)\|\eta-v\|_{X} \\
\text { for all } \eta, v \in X, \rho>0 \text { and } \lim _{\rho \rightarrow 0} G(\rho)=0 .
\end{array}\right. \\
& \left\{\begin{array}{l}
\text { There exists a function } H: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \text {and } h \in \mathbb{R}_{+} \text {such that } \\
j^{0}(u ; v)-j_{\rho}^{0}(u ; v) \leq H(\rho)\left(\|u\|_{X}+h\right)\|u-v\|_{X} \\
\text { for all } u, v \in X, \rho>0 \text { and } \lim _{\rho \rightarrow 0} H(\rho)=0 .
\end{array}\right. \\
& \qquad f_{\rho} \rightarrow f \text { in } X^{*}, \text { as } \rho \rightarrow 0 .
\end{aligned}
$$

Theorem

Assume the hypotheses above. Then $u_{\rho} \rightarrow u$ in X, as $\rho \rightarrow 0$.

A penalty method - formulation

We can prove the existence and uniqueness of solution to the variational-hemivariational inequality by applying a penalty method. We consider the following problem.

Problem (2)

Find an element $u \in K$ such that

$$
\langle A u, v-u\rangle+\varphi(v)-\varphi(u)+j^{0}(u ; v-u) \geq\langle f, v-u\rangle \text { for all } v \in K .
$$

Note that Problem (2) is a particular case of Problem (1) obtained for the function φ independent of the first variable. We need the following additional hypotheses.
$\varphi: X \rightarrow \mathbb{R}$ is convex and lower semicontinuous
$\left\{\begin{array}{l}j: X \rightarrow \mathbb{R} \text { is such that } \lim \sup j^{0}\left(u_{n} ; v-u_{n}\right) \leq j^{0}(u ; v-u) \\ \text { for all } v \in X \text { and } u_{n} \rightarrow u \text { weakly in } X .\end{array}\right.$

A penalty method - formulation

We adopt the following notion of the penalty operator.

Definition (a penalty operator)

A single-valued operator $P: X \rightarrow X^{*}$ is said to be a penalty operator of K if P is bounded, demicontinuous, monotone and $K=\{x \in X \mid P x=0\}$.

Then, for every $\lambda>0$, we consider the following penalized problem.

Problem (3)

Find an element $u_{\lambda} \in X$ such that
$\left\langle A u_{\lambda}, v-u_{\lambda}\right\rangle+\frac{1}{\lambda}\left\langle P u_{\lambda}, v-u_{\lambda}\right\rangle+\varphi(v)-\varphi\left(u_{\lambda}\right)+j^{0}\left(u_{\lambda} ; v-u_{\lambda}\right) \geq\left\langle f, v-u_{\lambda}\right\rangle$ for all $v \in X$, where $P: X \rightarrow X^{*}$ is the penalty operator of K.

A penalty method - convergence

Our main result for the penalty method is the following.

Theorem

Assume the hypotheses above, let P be a penalty operator of K, and

$$
\alpha_{j}<\min \left\{\alpha_{A}, m_{A}\right\}
$$

Then
(i) for each $\lambda>0$, there exists a unique solution $u_{\lambda} \in X$ to Problem (3); (ii) $u_{\lambda} \rightarrow u$ in X, as $\lambda \rightarrow 0$, where $u \in K$ is a unique solution to Problem (2).

Example

We provide sufficient conditions for functions which satisfy our hypotheses $H(j)$ and (3).

Lemma

Let X and Y be reflexive Banach spaces, $\psi: Y \rightarrow \mathbb{R}$ be a function which satisfies $H(j)$ and $\psi($ or $-\psi$) is regular, and let $M: X \rightarrow Y$ be given by

$$
M v=L v+v_{0}
$$

where $L: X \rightarrow Y$ is a linear compact operator and $v_{0} \in Y$ is fixed. Define the function $j: X \rightarrow \mathbb{R}$ by

$$
j(v)=\psi(M v) \text { for } v \in X
$$

Then the function j satisfies conditions $H(j)$ and (3).

Differential variational-hemivariational inequality with history-dependent operators

Problem

Find $\mathrm{x} \in H^{1}(0, T ; U)$ and $w \in L^{2}(0, T ; K)$ such that

$$
\left\{\begin{array}{l}
\mathrm{x}^{\prime}(t)=F\left(t, \mathrm{x}(t), w(t),\left(R_{0} w\right)(t)\right) \text { for a.e. } t \in(0, T), \\
\quad\left\langle A\left(t, \mathrm{x}(t),\left(R_{1} w\right)(t), w(t)\right)-f\left(t,\left(R_{2} w\right)(t)\right), v-w(t)\right\rangle \\
\quad+j^{0}\left(t, \mathrm{x}(t),\left(R_{4} w\right)(t), M w(t) ; M v-M w(t)\right) \\
\quad+\varphi\left(t, \mathrm{x}(t),\left(R_{3} w\right)(t), w(t), v\right)-\varphi\left(t, \mathrm{x}(t),\left(R_{3} w\right)(t), w(t), w(t)\right) \geq 0 \\
\quad \text { for all } v \in K \text {, a.e. } t \in(0, T), \\
\mathrm{x}(0)=\mathrm{x}_{0} .
\end{array}\right.
$$

Definition

Given normed spaces \mathbb{X} and \mathbb{Y}, we say that an operator

$$
\mathbb{S}: L^{2}(0, T ; \mathbb{X}) \rightarrow L^{2}(0, T ; \mathbb{Y})
$$

is a history-dependent operator, if there is a constant $c>0$ such that

$$
\left\|\left(\mathbb{S} v_{1}\right)(t)-\left(\mathbb{S} v_{2}\right)(t)\right\|_{\mathbb{Y}} \leq c \int_{0}^{t}\left\|v_{1}(s)-v_{2}(s)\right\|_{\mathbb{X}} d s
$$

for all $v_{1}, v_{2} \in L^{2}(0, T ; \mathbb{X})$, a.e. $t \in(0, T)$.

Part II

An application to a quasistatic contact problem

A quasistatic unilateral contact problem for viscoplastic material with friction and a nonsmooth multivalued contact condition.

The linearized strain-displacement relation are given by

$$
\varepsilon_{i j}(\boldsymbol{u})=(\varepsilon(\boldsymbol{u}))_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right) \text { in } \Omega,
$$

where $u_{i, j}=\partial u_{i} / \partial x_{j}$.

Find a displacement $\boldsymbol{u}: Q \rightarrow \mathbb{R}^{d}$, a stress $\sigma: Q \rightarrow \mathbb{S}^{d}$, and the adhesion $\beta: \Gamma_{C} \times(0, T) \rightarrow[0,1]$ such that for all $t \in(0, T), \boldsymbol{u}(0)=\boldsymbol{u}_{0}, \beta(0)=\beta_{0}$

$$
\begin{array}{rlrlrl}
\mathbf{0}= & \operatorname{Div} \boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t) & & \text { in } \Omega, \\
\boldsymbol{\sigma}(t)= & A\left(t, \boldsymbol{\varepsilon}\left(\boldsymbol{u}^{\prime}(t)\right)\right)+B(t, \boldsymbol{\varepsilon}(\boldsymbol{u}(t))) & & \\
& +\int_{0}^{t} G\left(s, \boldsymbol{\sigma}(s)-A\left(s, \boldsymbol{\varepsilon}\left(\boldsymbol{u}^{\prime}(s)\right)\right), \boldsymbol{\varepsilon}(\boldsymbol{u}(s)) d s\right. & & \text { in } \Omega, \\
\boldsymbol{u}(t)= & \mathbf{0} & & \text { on } \Gamma_{D}, \\
\boldsymbol{\sigma}(t) \boldsymbol{\nu}= & \boldsymbol{f}_{N}(t) & & \text { on } \Gamma_{N}, \\
\sigma_{\nu}(t)= & \sigma_{\nu}^{1}(t)+\sigma_{\nu}^{2}(t),-\sigma_{\nu}^{1}(t) \in p_{\nu}\left(t, \beta, u_{\nu}(t)\right) \partial j\left(u_{\nu}^{\prime}(t)\right) & & \text { on } \Gamma_{C}, \\
u_{\nu}^{\prime}(t) \leq & g, \sigma_{\nu}^{2}(t)+p\left(t, \beta(t), u_{\nu}(t), u_{\nu}^{\prime}(t)\right) \leq 0, & & \\
& \left(u_{\nu}^{\prime}(t)-g\right)\left(\sigma_{\nu}^{2}(t)+p\left(t, \beta(t), u_{\nu}(t), u_{\nu}^{\prime}(t)\right)\right)=0 & & \text { on } \Gamma_{C}, \\
\left\|\boldsymbol{\sigma}_{\tau}(t)\right\| \leq & \mu p\left(t, \beta(t), u_{\nu}(t), u_{\nu}^{\prime}(t)\right) & & \text { on } \Gamma_{C}, \\
-\boldsymbol{\sigma}_{\tau}(t)= & \mu p\left(t, \beta(t), u_{\nu}(t), u_{\nu}^{\prime}(t)\right) \frac{\boldsymbol{u}_{\tau}^{\prime}(t)}{\left\|u_{\tau}^{\prime}(t)\right\|}, & & \text { if } \boldsymbol{u}_{\tau}^{\prime}(t) \neq 0 & & \text { on } \Gamma_{C}, \\
\beta^{\prime}(t) & =h\left(t, u_{\nu}(t), \boldsymbol{u}_{\tau}(t), \beta(t)\right), & & \text { on } \Gamma_{C} .
\end{array}
$$

Example: nonconvex friction law

Clarke subgradient ∂j

Example: nonconvex friction law

Clarke subgradient ∂j

Example: zig-zag friction law

Clarke subgradient ∂j

Example: zig-zag friction law

Clarke subgradient ∂j

Example: infinite number of jumps

Let $/$ be an open subset of the real line \mathbb{R} and let M be a measurable subset of I such that for every open and nonempty subset I of I, meas $(I \cap M)>0$ and meas $(I \cap(I \backslash M))>0$.
Let

$$
g(s)= \begin{cases}b_{1} & \text { if } s \in M \\ -b_{2} & \text { if } s \notin M\end{cases}
$$

and $j(r)=\int_{0}^{r} g(\theta) d \theta$. Then the nonconvex potential j is locally Lipschitz and

$$
\partial j(r)=\left[-b_{2}, b_{1}\right] \text { for every } r \in I
$$

Monographs

2018

Thank you very much for your attention!

