On a Class of Variational Inequalities

Stanislaw Migórski

Jagiellonian University, Krakow, Poland

A joint work with Dong-ling Cai (Chengdu)

▲ @ ▶ ▲ ∃ ▶ ▲ ∃ ▶

Outline

• Variational-hemivariational inequalities in reflexive Banach spaces

- Problem formulation and particular cases
- Existence and uniqueness result
- Continuous dependence result
- Existence via a penalty method
- A generalization: differential variational-hemivariational inequality with history-dependent operators
- Application: a quasistatic unilateral contact problem for viscoplastic material with friction and a nonsmooth multivalued contact condition

Part I

Variational-hemivariational inequalities in reflexive Banach spaces

- 4 同 ト 4 ヨ ト 4 ヨ ト

Problem formulation

Let $(X, \|\cdot\|_X)$ be a reflexive Banach space and $K \subset X$ be a set. Given an operator $A: X \to X^*$, functions $\varphi: K \times K \to \mathbb{R}$, and $j: X \to \mathbb{R}$, we consider the following problem.

Problem (1)

Find an element $u \in K$ such that

$$\langle Au, v - u \rangle + \varphi(u, v) - \varphi(u, u) + j^0(u; v - u)$$

 $\geq \langle f, v - u \rangle \text{ for all } v \in K.$

The function $\varphi(u, \cdot)$ is assumed to be convex and the function j is locally Lipschitz and, in general, nonconvex. For this reason, inequality in Problem (1) is called a *quasi variational-hemivariational inequality*.

Motivation

The motivation to study Problem (1) comes from the facts:

- various problems considered in the literature can be formulated as Problem (1),
- many problems in mechanics can be formulated in the weak form as Problem (1).

Mathematical tool: convex subdifferential

Let E be a Banach space and E^* be its dual.

Definition (convex subdifferential)

Let $\varphi \colon E \to \mathbb{R} \cup \{+\infty\}$ be a convex function. The (convex) subdifferential of φ at x, and is defined by

$$\partial \varphi(x) = \{ x^* \in E^* \mid \varphi(v) \ge \varphi(x) + \langle x^*, v - x \rangle_{E^* \times E} \text{ for all } v \in E \}.$$

Sometimes we refer to $\partial \varphi$ as the subdifferential of φ in the sense of convex analysis. Observe that if $\varphi(x) = +\infty$, then $\partial \varphi(x) = \emptyset$.

The Clarke subgradient

Definition (Clarke subgradient, 1983)

Let $h: E \to \mathbb{R}$ be a locally Lipschitz function on a Banach space E.

The generalized directional derivative of h at x ∈ E in the direction v ∈ E is defined by

$$h^0(x; v) = \limsup_{y \to x, \ t \downarrow 0} \frac{h(y + tv) - h(y)}{t}$$

The generalized subgradient of h at x is given by
 ∂h(x) = { ζ ∈ E* | h⁰(x; v) ≥ ⟨ζ, v⟩_{E*×E} for all v ∈ E }.

A locally Lipschitz function h is called regular (in the sense of Clarke) at $x \in E$ if for all $v \in E$ the one-sided directional derivative h'(x; v) exists and satisfies $h^0(x; v) = h'(x; v)$ for all $v \in E$.

1. For $j \equiv 0$, Problem (1) reduces to the elliptic quasivariational inequality of the first kind of the form

$$u \in K$$
, $\langle Au, v - u \rangle + \varphi(u, v) - \varphi(u, u) \ge \langle f, v - u \rangle$ for all $v \in K$

studied, for example, in the book

M. Sofonea and A. Matei, *Mathematical Models in Contact Mechanics*, London Mathematical Society Lecture Note Series **398**, Cambridge University Press, 2012.

2. For $j \equiv 0$ and K = X, Problem (1) reduces to the elliptic quasivariational inequality of the second kind of the form

$$u \in X$$
, $\langle Au, v - u \rangle + \varphi(u, v) - \varphi(u, u) \ge \langle f, v - u \rangle$ for all $v \in X$

considered, for example, in the book

M. Sofonea and A. Matei, *Mathematical Models in Contact Mechanics*, London Mathematical Society Lecture Note Series **398**, Cambridge University Press, 2012.

3. For $j \equiv 0$ and $\varphi(u, v) = \varphi(v)$, Problem (1) takes the form of the elliptic variational inequality of the first kind of the form

$$u \in K$$
, $\langle Au, v - u \rangle + \varphi(v) - \varphi(u) \ge \langle f, v - u \rangle$ for all $v \in K$

treated, for instance, in

J.L. Lions and G. Stampacchia, Variational inequalities, *Comm. Pure Appl. Math.* **20** (1967), 493–519.

4. For $j \equiv 0$, K = X and $\varphi(u, v) = \varphi(v)$, Problem (1) reduces to the elliptic variational inequality of the second kind of the form

$$u \in X, \quad \langle Au, v - u \rangle + \varphi(v) - \varphi(u) \ge \langle f, v - u \rangle \text{ for all } v \in X$$

studied, for instance, in

H. Brézis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, *Ann. Inst. Fourier (Grenoble)* **18** (1968), 115–175.

J.L. Lions and G. Stampacchia, Variational inequalities, *Comm. Pure Appl. Math.* **20** (1967), 493–519.

M. Sofonea and A. Matei, *Mathematical Models in Contact Mechanics*, London Mathematical Society Lecture Note Series **398**, Cambridge University Press, 2012.

5. For $j \equiv 0$ and $\varphi \equiv 0$, Problem (1) reduces to the elliptic variational inequality of the form

$$u \in K$$
, $\langle Au, v - u \rangle \ge \langle f, v - u \rangle$ for all $v \in K$

considered, for instance, in

H. Brézis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, *Ann. Inst. Fourier (Grenoble)* **18** (1968), 115–175.

F.E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, *Bull. Amer. Math. Soc.* **71** (1965), 780–785.

6. For $\varphi \equiv 0$, K = X, from Problem (1), we obtain the elliptic hemivariational inequality of the form

$$u \in X$$
, $\langle Au, v \rangle + j^0(u; v) \ge \langle f, v \rangle$ for all $v \in X$

investigated, for instance, in

Z. Naniewicz and P. D. Panagiotopoulos, *Mathematical Theory of Hemivariational Inequalities and Applications*, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1995.

S. Migorski, A. Ochal and M. Sofonea, *Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems*, Advances in Mechanics and Mathematics **26**, Springer, New York, 2013.

7. For $j \equiv 0$, $\varphi \equiv 0$ and K = X, Problem (1) reduces to the elliptic equation

$$u \in X, Au = f.$$

▲ @ ▶ ▲ ∃ ▶ ▲ ∃ ▶

8. For K = X = V and $\varphi(u, v) = \int_{\Gamma} (Fu) \theta(\gamma v) d\Gamma$ for $u, v \in V$, Problem (1) reduces to: find $u \in V$ such that

$$\langle Au, v - u \rangle + \int_{\Gamma} (Fu) \left(\theta(\gamma v) - \theta(\gamma u) \right) \, d\Gamma$$

 $+ j^0(u; v - u) \ge \langle f, v - u \rangle \quad \text{for all } v \in V$

and it was studied in

W. Han, S. Migórski, M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems, *SIAM Journal of Mathematical Analysis* **46** (2014), 3891–3912.

Here $\Gamma \subseteq \partial\Omega$ is a measurable part of the boundary of an open bounded subset Ω of \mathbb{R}^d , V is a closed subspace of $H^1(\Omega; \mathbb{R}^s)$, $F: V \to L^2(\Gamma)$ and $\theta: \mathbb{R}^s \to \mathbb{R}$ are Lipschitz continuous $Fv \ge 0$ for all $v \in V$, θ is convex, and $\gamma: V \to L^2(\Gamma; \mathbb{R}^s)$ denotes the trace operator.

Hypotheses on the data of Problem (1)

 $\begin{array}{ll} H(K) \colon & K \mbox{ is a nonempty, closed and convex subset of } X. \\ H(f) \colon & f \in X^*. \\ H(A) \colon \end{array}$

 $A\colon X \to X^*$ is such that

(a) it is pseudomonotone : it is bounded, and $u_n \to u$ weakly in X with $\limsup \langle Au_n, u_n - u \rangle \leq 0$ imply $\lim \langle Au_n, u_n - u \rangle = 0$ and $Au_n \to Au$ weakly in X^{*}.

(b) there exist $\alpha_A > 0, \beta, \gamma \in \mathbb{R}$ and $u_0 \in K$ such that

 $\langle Av, v - u_0 \rangle \geq \alpha_A \, \|v\|_X^2 - \beta \, \|v\|_X - \gamma \ \text{ for all } \ v \in X.$

(c) strongly monotone, i.e., there exists $m_A > 0$ such that

$$\langle Av_1 - Av_2, v_1 - v_2 \rangle \geq m_A \|v_1 - v_2\|_X^2 \text{ for all } v_1, v_2 \in X.$$

Hypothesis $H(\varphi)$

 $\begin{cases} \varphi \colon K \times K \to \mathbb{R} \text{ is such that} \\ (a) \ \varphi(\eta, \cdot) \colon K \to \mathbb{R} \text{ is convex and lower semicontinuous on } K, \\ \text{ for all } \eta \in K. \end{cases}$ (b) there exists $\alpha_{\varphi} > 0$ such that $\varphi(\eta_1, v_2) - \varphi(\eta_1, v_1) + \varphi(\eta_2, v_1) - \varphi(\eta_2, v_2) \\ \leq \alpha_{\varphi} \|\eta_1 - \eta_2\|_X \|v_1 - v_2\|_X$ for all $\eta_1, \eta_2, v_1, v_2 \in K.$

Hypothesis H(j)

 $\begin{cases} j: X \to \mathbb{R} \text{ is such that} \\ (a) j \text{ is locally Lipschitz.} \\ (b) \|\partial j(v)\|_{X^*} \leq c_0 + c_1 \|v\|_X \text{ for all } v \in X \text{ with } c_0, c_1 \geq 0. \\ (c) \text{ there exists } \alpha_j \geq 0 \text{ such that} \\ i^0(v, \cdots) = 0. \end{cases}$ $j^0(v_1; v_2 - v_1) + j^0(v_2; v_1 - v_2) \le \alpha_j \|v_1 - v_2\|_X^2$ for all $v_1, v_2 \in X$.

Existence and uniqueness result

Theorem (2)

Assume H(K), H(f), H(A), $H(\varphi)$, H(j) and, in addition, assume the smallness conditions

 $\alpha_{\varphi} + \alpha_j < m_A,$

 $\alpha_j < \alpha_A.$

Then, Problem (1) has a unique solution $u \in K$.

Remark on hypothesis H(j)

• If $j: X \to \mathbb{R}$ is a locally Lipschitz function, then hypothesis H(j)(c):

$$j^0(v_1;v_2-v_1)+j^0(v_2;v_1-v_2)\leq lpha_j\,\|v_1-v_2\|_X^2$$
 for all $v_1,v_2\in X$

with $\alpha_j \geq 0$, is equivalent to

$$\langle \partial j(\mathbf{v}_1) - \partial j(\mathbf{v}_2), \mathbf{v}_1 - \mathbf{v}_2 \rangle \ge -\alpha_j \|\mathbf{v}_1 - \mathbf{v}_2\|_X^2 \text{ for all } \mathbf{v}_1, \mathbf{v}_2 \in X.$$
 (1)

The latter is called the relaxed monotonicity condition.

Note also that if j: X → ℝ is a convex function, then H(j)(c) or, equivalently, condition (1) always holds since it reduces to the monotonicity of the (convex) subdifferential, i.e., α_j = 0.

イロト イポト イヨト イヨト

Remark on H(j)

- A convex and continuous function f: X → R is locally Lipschitz.
 More generally, a convex function f: X → R, which is bounded above on a neighborhood of some point is locally Lipschitz (see Clarke).
- A function f: X → ℝ, which is Lipschitz continuous on bounded subsets of X is locally Lipschitz. The converse assertion is not generally true.

F. H. Clarke, *Optimization and Nonsmooth Analysis*, Society for Industrial and Applied Mathematics, Philadelphia, PA (1990).

Continuous dependence result for Problem (1)

Let $\rho > 0$ be a parameter. Consider the following version of Problem (1).

Problem (1_{ρ})

Find $u_{\rho} \in K$ such that

Consider the functions φ_{ρ} , j_{ρ} and f_{ρ} which satisfy hypotheses $H(\varphi)$, H(j) and H(f) with constants $\alpha_{\varphi_{\rho}}$ and $\alpha_{j_{\rho}}$, respectively. Assume that

there exists $m_0 \in \mathbb{R}$ such that $\alpha_{\varphi_{\rho}} + \alpha_{j_{\rho}} \leq m_0 < m_A$ for all $\rho > 0$, and $\alpha_{j_{\rho}} < \alpha_A$ for all $\rho > 0$.

Theorem (2) guarantees that Problem (1_{ρ}) has a unique solution $u_{\rho} \in K$, for each $\rho > 0$.

Continuous dependence result for Problem (1)

We now consider the following hypotheses.

 $\begin{cases} \text{ There exists a function } G \colon \mathbb{R}_+ \to \mathbb{R}_+ \text{ and } g \in \mathbb{R}_+ \text{ such that} \\ \varphi(\eta, \mathbf{v}) - \varphi(\eta, \eta) - \varphi_\rho(\eta, \mathbf{v}) + \varphi_\rho(\eta, \eta) \leq G(\rho)(\|\eta\|_X + g)\|\eta - \mathbf{v}\|_X \\ \text{ for all } \eta, \mathbf{v} \in X, \ \rho > 0 \text{ and } \lim_{\rho \to 0} G(\rho) = 0. \end{cases}$ $\begin{cases} \text{ There exists a function } H \colon \mathbb{R}_+ \to \mathbb{R}_+ \text{ and } h \in \mathbb{R}_+ \text{ such that} \\ j^0(u; v) - j^0_\rho(u; v) \le H(\rho)(\|u\|_X + h)\|u - v\|_X \\ \text{ for all } u, v \in X, \ \rho > 0 \text{ and } \lim_{\rho \to 0} H(\rho) = 0. \end{cases}$

$$f_
ho o f$$
 in X^* , as $ho o 0$.

Theorem

Assume the hypotheses above. Then $u_{\rho} \rightarrow u$ in X, as $\rho \rightarrow 0$.

(Jagiellonian University, Krakow)

A penalty method – formulation

We can prove the existence and uniqueness of solution to the variational-hemivariational inequality by applying a penalty method. We consider the following problem.

Problem (2)

Find an element $u \in K$ such that

$$\langle Au, v - u \rangle + \varphi(v) - \varphi(u) + j^0(u; v - u) \ge \langle f, v - u \rangle$$
 for all $v \in K$.

Note that Problem (2) is a particular case of Problem (1) obtained for the function φ independent of the first variable. We need the following additional hypotheses.

$$\varphi \colon X \to \mathbb{R} \text{ is convex and lower semicontinuous}$$

$$\begin{cases} j \colon X \to \mathbb{R} \text{ is such that } \limsup j^0(u_n; v - u_n) \le j^0(u; v - u) \\ \text{ for all } v \in X \text{ and } u_n \to u \text{ weakly in } X. \end{cases}$$

$$(3)$$

A penalty method – formulation

We adopt the following notion of the penalty operator.

Definition (a penalty operator)

A single-valued operator $P: X \to X^*$ is said to be a *penalty operator* of K if P is bounded, demicontinuous, monotone and $K = \{x \in X \mid Px = 0\}$.

Then, for every $\lambda > 0$, we consider the following penalized problem.

Problem (3)

Find an element $u_{\lambda} \in X$ such that

$$\langle Au_{\lambda}, v-u_{\lambda} \rangle + \frac{1}{\lambda} \langle Pu_{\lambda}, v-u_{\lambda} \rangle + \varphi(v) - \varphi(u_{\lambda}) + j^{0}(u_{\lambda}; v-u_{\lambda}) \geq \langle f, v-u_{\lambda} \rangle$$

for all $v \in X$, where $P \colon X \to X^*$ is the penalty operator of K.

ヘロン 人間と 人間と 人間と

A penalty method – convergence

Our main result for the penalty method is the following.

Theorem

Assume the hypotheses above, let P be a penalty operator of K, and

 $\alpha_j < \min{\{\alpha_A, m_A\}}.$

Then

(i) for each $\lambda > 0$, there exists a unique solution $u_{\lambda} \in X$ to Problem (3); (ii) $u_{\lambda} \rightarrow u$ in X, as $\lambda \rightarrow 0$, where $u \in K$ is a unique solution to Problem (2).

Example

We provide sufficient conditions for functions which satisfy our hypotheses H(j) and (3).

Lemma

Let X and Y be reflexive Banach spaces, $\psi \colon Y \to \mathbb{R}$ be a function which satisfies H(j) and ψ (or $-\psi$) is regular, and let $M \colon X \to Y$ be given by

$$Mv = Lv + v_0,$$

where L: $X \to Y$ is a linear compact operator and $v_0 \in Y$ is fixed. Define the function $j: X \to \mathbb{R}$ by

$$j(\mathbf{v}) = \psi(M\mathbf{v}) \text{ for } \mathbf{v} \in X.$$

Then the function j satisfies conditions H(j) and (3).

(日) (同) (三) (三)

Differential variational-hemivariational inequality with history-dependent operators

Problem

Find $x \in H^1(0, T; U)$ and $w \in L^2(0, T; K)$ such that

$$\begin{cases} x'(t) = F(t, x(t), w(t), (R_0 w)(t)) & \text{for a.e. } t \in (0, T), \\ \langle A(t, x(t), (R_1 w)(t), w(t)) - f(t, (R_2 w)(t)), v - w(t) \rangle \\ + j^0(t, x(t), (R_4 w)(t), Mw(t); Mv - Mw(t)) \\ + \varphi(t, x(t), (R_3 w)(t), w(t), v) - \varphi(t, x(t), (R_3 w)(t), w(t), w(t)) \ge 0 \\ & \text{for all } v \in K, \text{ a.e. } t \in (0, T), \\ x(0) = x_0. \end{cases}$$

Definition

Given normed spaces $\mathbb X$ and $\mathbb Y,$ we say that an operator

 $\mathbb{S}: L^2(0, T; \mathbb{X}) \to L^2(0, T; \mathbb{Y})$

is a history-dependent operator, if there is a constant c > 0 such that

$$\|(\mathbb{S}v_1)(t) - (\mathbb{S}v_2)(t)\|_{\mathbb{Y}} \leq c \int_0^t \|v_1(s) - v_2(s)\|_{\mathbb{X}} \, ds$$

for all v_1 , $v_2 \in L^2(0, T; X)$, a.e. $t \in (0, T)$.

Part II

An application to a quasistatic contact problem

A quasistatic unilateral contact problem for viscoplastic material with friction and a nonsmooth multivalued contact condition.

The linearized strain-displacement relation are given by

$$arepsilon_{ij}(oldsymbol{u}) = (arepsilon(oldsymbol{u}))_{ij} = rac{1}{2}(u_{i,j}+u_{j,i}) \ \ ext{in} \ \ \Omega,$$

where $u_{i,j} = \partial u_i / \partial x_j$.

Find a displacement $\boldsymbol{u} \colon Q \to \mathbb{R}^d$, a stress $\boldsymbol{\sigma} \colon Q \to \mathbb{S}^d$, and the adhesion $\beta \colon \Gamma_C \times (0, T) \to [0, 1]$ such that for all $t \in (0, T)$, $\boldsymbol{u}(0) = \boldsymbol{u}_0$, $\beta(0) = \beta_0$

$$\mathbf{0} = \operatorname{Div} \boldsymbol{\sigma}(t) + \boldsymbol{f}_0(t) \qquad \text{in} \quad \Omega,$$

$$egin{aligned} \sigma(t) &= A(t, arepsilon(oldsymbol{u}'(t))) + B(t, arepsilon(oldsymbol{u}(t))) \ &+ \int_0^t Gig(s, \sigma(s) - A(s, arepsilon(oldsymbol{u}'(s))), arepsilon(oldsymbol{u}(s)) \, ds \ & ext{in} \quad \Omega, \end{aligned}$$

$$\boldsymbol{u}(t) = \boldsymbol{0} \qquad \qquad \text{on} \quad \boldsymbol{\Gamma}_{D},$$

$$\sigma(t)\nu = f_N(t)$$
 on Γ_N ,

$$\begin{split} \sigma_{\nu}(t) &= \sigma_{\nu}^{1}(t) + \sigma_{\nu}^{2}(t), \ -\sigma_{\nu}^{1}(t) \in p_{\nu}(t,\beta,u_{\nu}(t)) \ \partial j(u_{\nu}'(t)) \quad \text{on} \quad \mathsf{\Gamma}_{\mathcal{C}}, \\ u_{\nu}'(t) &\leq g, \ \sigma_{\nu}^{2}(t) + p(t,\beta(t),u_{\nu}(t),u_{\nu}'(t)) \leq 0, \\ &\qquad (u_{\nu}'(t) - g)(\sigma_{\nu}^{2}(t) + p(t,\beta(t),u_{\nu}(t),u_{\nu}'(t))) = 0 \quad \text{on} \quad \mathsf{\Gamma}_{\mathcal{C}}, \end{split}$$

$$\|\boldsymbol{\sigma}_{\tau}(t)\| \leq \mu \, p(t, \beta(t), u_{\nu}(t), u_{\nu}'(t)) \qquad \text{on} \quad \boldsymbol{\Gamma}_{\mathcal{C}},$$

$$-\boldsymbol{\sigma}_{\tau}(t) = \mu \, \boldsymbol{p}(t, \beta(t), \boldsymbol{u}_{\nu}(t), \boldsymbol{u}_{\nu}'(t)) \frac{\boldsymbol{u}_{\tau}'(t)}{\|\boldsymbol{u}_{\tau}'(t)\|}, \quad \text{if } \boldsymbol{u}_{\tau}'(t) \neq 0 \qquad \text{on} \quad \boldsymbol{\Gamma}_{C},$$

Example: nonconvex friction law

Example: nonconvex friction law

 $j(\xi) = \max\{a \| \xi \|, f_1(\xi), f_2(\xi)\}$

(Jagiellonian University, Krakow)

33 / 37

(日) (同) (三) (三)

Example: zig-zag friction law

 $j(\boldsymbol{\xi}) = \max\{f_1(\boldsymbol{\xi}), f_2(\boldsymbol{\xi}), f_3(\boldsymbol{\xi}), f_1'(\boldsymbol{\xi}), f_2'(\boldsymbol{\xi}), f_3'(\boldsymbol{\xi})\}$

Clarke subgradient ∂j

イロト イ伺ト イヨト イヨト

Example: zig-zag friction law

Example: infinite number of jumps

Let *I* be an open subset of the real line \mathbb{R} and let *M* be a measurable subset of *I* such that for every open and nonempty subset *I* of *I*, $meas(I \cap M) > 0$ and $meas(I \cap (I \setminus M)) > 0$. Let

$$\mathsf{g}(s) = egin{cases} b_1 & ext{if } s \in M \ -b_2 & ext{if } s
otin M \end{cases}$$

and $j(r) = \int_0^r g(\theta) d\theta$. Then the nonconvex potential j is locally Lipschitz and

$$\partial j(r) = [-b_2, b_1]$$
 for every $r \in I$.

(Jagiellonian University, Krakow)

On a Class of Variational Inequalities

Monographs

Thank you very much for your attention!

3

< ロ > < 同 > < 三 > < 三 >