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Random walks

Let

{Xi}i∈N i.i.d. with density f : Rd −→ R.

We define

Sn =
n∑

i=1

Xi , Sn ∼ f n∗ =

∫
Rd

f (x − y)f (n−1)∗(y)dy .
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Compound Possion measure

Let N be a variable with Poisson distribution,

independent from {Xi}i∈N which is i.i.d..

We define

Y =
N∑
i=1

Xi .
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Measure of such variable is,

Pλ(dx) = e−λδ0(dx) + e−λ
∞∑
n=1

λnf n⋆(x)

n!
dx .

The absolute continuous part of that measure we denote by pλ.
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Similarly, we define Compound Poisson Measure,

Y (t) =

N(t)∑
i=1

Xi .
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Typical trajectory
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Application

▶ Theory of Lévy processes [8, Sato];

▶ Queueing theory and analysis of risk [3, Embrechts,
Klüppelberg, Mikosch];

▶ hydrology [4, Revfeim];
▶ Schrödinger semigroup theory [7, Kaleta, Lőrinczi];
▶ Convolution equivalence theory [6, Kaleta, Sztonyk] [5,
Kaleta, Ponikowski].
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▶ Theory of Lévy processes [8, Sato];
▶ Queueing theory and analysis of risk [3, Embrechts,
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▶ Convolution equivalence theory [6, Kaleta, Sztonyk] [5,
Kaleta, Ponikowski].

Miłosz Baraniewicz Convolutions of radial, exponential densities



Motivation
General results

Results for exponential densities
Application

Random walk
Compound Possion measure
Convolution equivalence

Application
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Convolution equivalence class

f 2∗(x) ¬ Cf (x)

y

0
A

Miłosz Baraniewicz Convolutions of radial, exponential densities



Motivation
General results

Results for exponential densities
Application

Random walk
Compound Possion measure
Convolution equivalence

Convolution equivalence class

f 2∗(x) ¬ Cf (x) f n∗(x) ¬ Cn−1f (x)

y

0
A
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Outside of the convolution equivalence class

What if lim
|x |→∞

f 2⋆(x)
f (x) =∞?

▶ What is the asymptotic behaviour of f n⋆

f ?

▶ what behaviour has pλ?

Miłosz Baraniewicz Convolutions of radial, exponential densities



Motivation
General results

Results for exponential densities
Application

Random walk
Compound Possion measure
Convolution equivalence

Outside of the convolution equivalence class

What if lim
|x |→∞

f 2⋆(x)
f (x) =∞?

▶ What is the asymptotic behaviour of f n⋆

f ?

▶ what behaviour has pλ?

Miłosz Baraniewicz Convolutions of radial, exponential densities



Motivation
General results

Results for exponential densities
Application

Random walk
Compound Possion measure
Convolution equivalence

Outside of the convolution equivalence class

What if lim
|x |→∞

f 2⋆(x)
f (x) =∞?

▶ What is the asymptotic behaviour of f n⋆

f ?

▶ what behaviour has pλ?

Miłosz Baraniewicz Convolutions of radial, exponential densities



Motivation
General results

Results for exponential densities
Application

Random walk
Compound Possion measure
Convolution equivalence

Example

Let’s consider function f (x) = e−m|x ||x |−γ where m > 0,
γ ∈ [0, d).

cos
cos
▶ If γ ∈

(
d+1
2 , d

)
then sup

|x |­1

f 2⋆(x)
f (x) <∞.

cos
▶ If γ ∈

[
0, d+12

]
then lim

|x |→∞
f 2⋆(x)
f (x) =∞.
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General framework

Let f : Rd → (0,∞) and

1. f ∈ L1(Rd);

2. f is isotropic, decreasing;

3. there exists a constant C1 ­ 1, such f (x) ¬ C1f (y) for
1 ¬ |x | ¬ |y | ¬ |x |+ 1;

4. there exists a constant C2 ­ 1, such f (x) ¬ C2f (2x) for
|x | ¬ 1.
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Functions hn

Let’s define
h1 ≡ 1Rd ,

h2(x) :=

∫
D(x) f (x − y)f (y)dy

f (x)
, x ∈ Rd ,

and by induction

hn+1(x) :=

∫
D(x) f (x − y)f (y)hn(y)dy

f (x)
, x ∈ Rd , n ­ 2.
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Theorem
For n ∈ N and |x | ­ 1,

f n⋆(x) ≍
(

n∑
i=1

(
n

i

)
Cn−ihi (x)

)
f (x).

The constant C is different in both estimates.
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Corollary

(a) If there exists a constant C > 0, such h2(x) < C , for every
x ∈ Rd , then

f n⋆(x) ≍ nCn−1f (x) |x | ­ 1, n ∈ N.

(b) If h2(x)
|x |→∞−−−−→∞, then for every n ∈ N

1
hn(x)

f n⋆(x)

f (x)

|x |→∞−−−−→ 1,

f n⋆(x)

f (x)

|x |→∞−−−−→∞, f n⋆(x)

f m⋆(x)

|x |→∞−−−−→ 0 for m > n.
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exponential densities
auxiliary functions
Main theorem

Exponential densities

Let f (x) := e−m|x |g(x), m > 0 and g : Rd → (0,∞) be, such

1. g ∈ L1(Rd),

2. g is isotropic, decreasing,

3. there exists a constant C ­ 1, such g(x) ¬ Cg(2x) for
x ∈ Rd .
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Main theorem

Let H1 ≡ 1[0,∞) and define inductively:

Hn+1 ≡ 0 on [0, 2]

and for r > 2

Hn+1(r) :=
1

g(r)r
d−1
2

∫ r−1

1
g(r − ρ)(r − ρ)

d−1
2 g(ρ)ρ

d−1
2 Hn(ρ)dρ.
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Main theorem

Let d ­ 2, there exists constant M > 0 such

hn(x) ¬ Mn−1Hn(|x |), x ∈ Rd , n ­ 1,
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Example
Estimates of convolutions
Estimates of densities of compound Poisson measure

Let’s come back to the example of a function

f (x) = e−m|x ||x |−γ

where m > 0, γ ∈ [0, d+12 ).
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Estimates of convolutions

Let |x | ­ 1, n ∈ N. Let’s denote ρ1 = d − γ and ρ2 = d+1
2 − γ.

Then there exist constants D1,D2 such

p

Dn−1
1

Γ(ρ1)
n

Γ(ρ1n)
¬ f n⋆(x)

f (x)|x |
(
d+1
2 −γ

)
(n−1)

¬ Dn−1
2

Γ(ρ2)
n

Γ(ρ2n)
+O

(
1

|x |
d+1
2 −γ

)
.
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Estimates of densities of compound Poisson measure

We have

f n⋆(x) ≍ f (x)|x |
(
d+1
2 −γ

)
(n−1)Dn−1 Γ(ρi )

n

Γ(ρin)
.

Because of that we have

pλ(x) = e−λ∥f ∥1
∞∑
n=1

λnf n⋆(x)

n!

≍ e−λ∥f ∥1
∞∑
n=1

λn|x |
(
d+1
2 −γ

)
(n−1)Dn−1Γ(ρi )

n

Γ(ρin)n!
.
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Generalized Bessel function:

φ(ρ, β; t) :=
∞∑
n=0

tn

Γ(ρn + β)n!
, ρ > 0, β ­ 0, t > 0.

It’s asymptotic is described in [9, Wright].[DLMF, 10.46.1]. In
particular we have the following.

Fact
There exist D1,D2 > 0 (depended on ρ i β) such, as

D1 ¬
φ(ρ, β; t)

t
1−2β
2ρ+2 exp

((
1+ 1/ρ

)
(ρt)

1
ρ+1

) ¬ D2, t ­ 1.

Miłosz Baraniewicz Convolutions of radial, exponential densities



Motivation
General results

Results for exponential densities
Application

Example
Estimates of convolutions
Estimates of densities of compound Poisson measure

Generalized Bessel function:

φ(ρ, β; t) :=
∞∑
n=0

tn

Γ(ρn + β)n!
, ρ > 0, β ­ 0, t > 0.

It’s asymptotic is described in [9, Wright].[DLMF, 10.46.1]. In
particular we have the following.

Fact
There exist D1,D2 > 0 (depended on ρ i β) such, as

D1 ¬
φ(ρ, β; t)

t
1−2β
2ρ+2 exp

((
1+ 1/ρ

)
(ρt)

1
ρ+1

) ¬ D2, t ­ 1.

Miłosz Baraniewicz Convolutions of radial, exponential densities



Motivation
General results

Results for exponential densities
Application

Example
Estimates of convolutions
Estimates of densities of compound Poisson measure

Estimates of densities of compound Poisson measure

If |x | ­ 1 and λ > 0, then exist ρ1, ρ2, κ1 and κ2 such

p

pλ(x)

e−λ∥f ∥1e−m|x ||x |−
d+1
2

­ φ
(
ρ1, 0;κ1λ|x |

d+1
2 −γ

)
and

pλ(x)

e−λ∥f ∥1e−m|x ||x |−
d+1
2

¬ eM2λφ
(
ρ2, 0;κ2λ|x |

d+1
2 −γ

)
.
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If λ|x |
d+1
2 −γ ­ 1, then there exist constants E1,E2,E3 and E4 such

pλ(x)

e−λ∥f ∥1e−m|x ||x |−
d+1
2

­ E1 exp

(
E2
(
λ|x |

d+1
2 −γ

) 1
ρ1+1

)

and

pλ(x)

e−λ∥f ∥1e−m|x ||x |−
d+1
2

¬ E3e
λM exp

(
E4
(
λ|x |

d+1
2 −γ

) 1
ρ2+1

)
.
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Thank you for your attention!
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