Convolutions of radial, exponential densities

Miłosz Baraniewicz

Wrocław University of Science and Technology
about joint work with Kamil Kaleta [1]

Plan of the presentation

1. Motivation
2. General results
3. Results for exponential densities
4. Application

Random walks

Let

$$
\left\{X_{i}\right\}_{i \in \mathbb{N}} \text { i.i.d. } \quad \text { with density } \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R} .
$$

Random walks

Let

$$
\left\{X_{i}\right\}_{i \in \mathbb{N}} \text { i.i.d. } \quad \text { with density } \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R} .
$$

We define

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

Random walks

Let

$$
\left\{X_{i}\right\}_{i \in \mathbb{N}} \text { i.i.d. } \quad \text { with density } \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R} .
$$

We define

$$
S_{n}=\sum_{i=1}^{n} X_{i}, \quad S_{n} \sim f^{n *}=\int_{\mathbb{R}^{d}} f(x-y) f^{(n-1) *}(y) d y
$$

Compound Possion measure

Let N be a variable with Poisson distribution, independent from $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ which is i.i.d..

We define

$$
Y=\sum_{i=1}^{N} X_{i}
$$

Measure of such variable is,

$$
P_{\lambda}(d x)=e^{-\lambda} \delta_{0}(d x)+e^{-\lambda} \sum_{n=1}^{\infty} \frac{\lambda^{n} f^{n \star}(x)}{n!} d x
$$

Measure of such variable is,

$$
P_{\lambda}(d x)=e^{-\lambda} \delta_{0}(d x)+e^{-\lambda} \sum_{n=1}^{\infty} \frac{\lambda^{n} f^{n \star}(x)}{n!} d x
$$

The absolute continuous part of that measure we denote by p_{λ}.

Similarly, we define Compound Poisson Measure,

$$
Y(t)=\sum_{i=1}^{N(t)} X_{i}
$$

Typical trajectory

Application

- Theory of Lévy processes [8, Sato];

Application

- Theory of Lévy processes [8, Sato];
- Queueing theory and analysis of risk [3, Embrechts, Klüppelberg, Mikosch];

Application

- Theory of Lévy processes [8, Sato];
- Queueing theory and analysis of risk [3, Embrechts, Klüppelberg, Mikosch];
- hydrology [4, Revfeim];

Application

- Theory of Lévy processes [8, Sato];
- Queueing theory and analysis of risk [3, Embrechts, Klüppelberg, Mikosch];
- hydrology [4, Revfeim];
- Schrödinger semigroup theory [7, Kaleta, Lőrinczi];

Application

- Theory of Lévy processes [8, Sato];
- Queueing theory and analysis of risk [3, Embrechts, Klüppelberg, Mikosch];
- hydrology [4, Revfeim];
- Schrödinger semigroup theory [7, Kaleta, Lőrinczi];
- Convolution equivalence theory [6, Kaleta, Sztonyk] [5, Kaleta, Ponikowski].

Convolution equivalence class

$$
f^{2 *}(x) \leqslant C f(x)
$$

Convolution equivalence class

$$
f^{2 *}(x) \leqslant C f(x) \quad f^{n *}(x) \leqslant C^{n-1} f(x)
$$

Outside of the convolution equivalence class

What if $\lim _{|x| \rightarrow \infty} \frac{f^{2 \star}(x)}{f(x)}=\infty$?

Outside of the convolution equivalence class

What if $\lim _{|x| \rightarrow \infty} \frac{f^{2 \star}(x)}{f(x)}=\infty$?

- What is the asymptotic behaviour of $\frac{f^{n \star}}{f}$?

Outside of the convolution equivalence class

What if $\lim _{|x| \rightarrow \infty} \frac{f^{2 *}(x)}{f(x)}=\infty$?

- What is the asymptotic behaviour of $\frac{f^{n \star}}{f}$?
- what behaviour has p_{λ} ?

Example

> Let's consider function $f(x)=e^{-m|x|}|x|^{-\gamma}$ where $m>0$, $\gamma \in[0, d)$.

Example

> Let's consider function $f(x)=e^{-m|x|}|x|^{-\gamma}$ where $m>0$, $\gamma \in[0, d)$.

$$
\text { - If } \gamma \in\left(\frac{d+1}{2}, d\right) \quad \text { then } \quad \sup _{|x| \geqslant 1}^{|x| \geqslant 1} \frac{f^{2 *}(x)}{f(x)}<\infty \text {. }
$$

Example

Let's consider function $f(x)=e^{-m|x|}|x|^{-\gamma}$ where $m>0$, $\gamma \in[0, d)$.

- If $\gamma \in\left(\frac{d+1}{2}, d\right) \quad$ then $\quad \sup _{|x| \geqslant 1}^{\left\lvert\, \frac{f^{2 *}(x)}{f(x)}\right.}<\infty$.
- If $\gamma \in\left[0, \frac{d+1}{2}\right]$ then $\lim _{|x| \rightarrow \infty} \frac{f^{2 *}(x)}{f(x)}=\infty$.

General framework

> Let $f: \mathbb{R}^{d} \rightarrow(0, \infty)$ and
> 1. $f \in L^{1}\left(\mathbb{R}^{d}\right) ;$

General framework

Let $f: \mathbb{R}^{d} \rightarrow(0, \infty)$ and

1. $f \in L^{1}\left(\mathbb{R}^{d}\right)$;
2. f is isotropic, decreasing;

General framework

Let $f: \mathbb{R}^{d} \rightarrow(0, \infty)$ and

1. $f \in L^{1}\left(\mathbb{R}^{d}\right)$;
2. f is isotropic, decreasing;
3. there exists a constant $C_{1} \geqslant 1$, such $f(x) \leqslant C_{1} f(y)$ for $1 \leqslant|x| \leqslant|y| \leqslant|x|+1 ;$

General framework

Let $f: \mathbb{R}^{d} \rightarrow(0, \infty)$ and

1. $f \in L^{1}\left(\mathbb{R}^{d}\right)$;
2. f is isotropic, decreasing;
3. there exists a constant $C_{1} \geqslant 1$, such $f(x) \leqslant C_{1} f(y)$ for $1 \leqslant|x| \leqslant|y| \leqslant|x|+1 ;$
4. there exists a constant $C_{2} \geqslant 1$, such $f(x) \leqslant C_{2} f(2 x)$ for $|x| \leqslant 1$.

Functions h_{n}

Let's define

$$
\begin{gathered}
h_{1} \equiv \mathbb{1}_{\mathbb{R}^{d}} \\
h_{2}(x):=\frac{\int_{D(x)} f(x-y) f(y) d y}{f(x)}, \quad x \in \mathbb{R}^{d},
\end{gathered}
$$

Functions h_{n}

Let's define

$$
\begin{gathered}
h_{1} \equiv \mathbb{1}_{\mathbb{R}^{d}} \\
h_{2}(x):=\frac{\int_{D(x)} f(x-y) f(y) d y}{f(x)}, \quad x \in \mathbb{R}^{d}
\end{gathered}
$$

and by induction

$$
h_{n+1}(x):=\frac{\int_{D(x)} f(x-y) f(y) h_{n}(y) d y}{f(x)}, \quad x \in \mathbb{R}^{d}, \quad n \geqslant 2
$$

Theorem
For $n \in \mathbb{N}$ and $|x| \geqslant 1$,

$$
f^{n \star}(x) \asymp\left(\sum_{i=1}^{n}\binom{n}{i} C^{n-i} h_{i}(x)\right) f(x) .
$$

The constant C is different in both estimates.

Corollary

(a) If there exists a constant $C>0$, such $h_{2}(x)<C$, for every $x \in \mathbb{R}^{d}$, then

$$
f^{n \star}(x) \asymp n C^{n-1} f(x) \quad|x| \geqslant 1, n \in \mathbb{N} .
$$

Corollary

(a) If there exists a constant $C>0$, such $h_{2}(x)<C$, for every $x \in \mathbb{R}^{d}$, then

$$
f^{n \star}(x) \asymp n C^{n-1} f(x) \quad|x| \geqslant 1, n \in \mathbb{N} .
$$

(b) If $h_{2}(x) \xrightarrow{|x| \rightarrow \infty} \infty$, then for every $n \in \mathbb{N}$

$$
\frac{1}{h_{n}(x)} \frac{f^{n \star}(x)}{f(x)} \xrightarrow{|x| \rightarrow \infty} 1
$$

Corollary

(a) If there exists a constant $C>0$, such $h_{2}(x)<C$, for every $x \in \mathbb{R}^{d}$, then

$$
f^{n \star}(x) \asymp n C^{n-1} f(x) \quad|x| \geqslant 1, n \in \mathbb{N} .
$$

(b) If $h_{2}(x) \xrightarrow{|x| \rightarrow \infty} \infty$, then for every $n \in \mathbb{N}$

$$
\begin{aligned}
& \frac{1}{h_{n}(x)} \frac{f^{n \star}(x)}{f(x)} \stackrel{|x| \rightarrow \infty}{\longrightarrow} 1, \\
& \frac{f^{n \star}(x)}{f(x)} \xrightarrow{|x| \rightarrow \infty} \infty
\end{aligned}
$$

Corollary

(a) If there exists a constant $C>0$, such $h_{2}(x)<C$, for every $x \in \mathbb{R}^{d}$, then

$$
f^{n \star}(x) \asymp n C^{n-1} f(x) \quad|x| \geqslant 1, n \in \mathbb{N} .
$$

(b) If $h_{2}(x) \xrightarrow{|x| \rightarrow \infty} \infty$, then for every $n \in \mathbb{N}$

$$
\begin{gathered}
\frac{1}{h_{n}(x)} \frac{f^{n \star}(x)}{f(x)} \xrightarrow{|x| \rightarrow \infty} 1, \\
\frac{f^{n \star}(x)}{f(x)} \xrightarrow{|x| \rightarrow \infty} \infty, \quad \frac{f^{n \star}(x)}{f^{m \star}(x)} \xrightarrow{|x| \rightarrow \infty} 0 \text { for } m>n .
\end{gathered}
$$

Exponential densities

$$
\begin{aligned}
& \text { Let } f(x):=e^{-m|x|} g(x), m>0 \text { and } g: \mathbb{R}^{d} \rightarrow(0, \infty) \text { be, such } \\
& \text { 1. } g \in L^{1}\left(\mathbb{R}^{d}\right) \text {, }
\end{aligned}
$$

Exponential densities

$$
\begin{aligned}
& \text { Let } f(x):=e^{-m|x|} g(x), m>0 \text { and } g: \mathbb{R}^{d} \rightarrow(0, \infty) \text { be, such } \\
& \text { 1. } g \in L^{1}\left(\mathbb{R}^{d}\right) \text {, } \\
& \text { 2. } g \text { is isotropic, decreasing, }
\end{aligned}
$$

Exponential densities

Let $f(x):=e^{-m|x|} g(x), m>0$ and $g: \mathbb{R}^{d} \rightarrow(0, \infty)$ be, such

1. $g \in L^{1}\left(\mathbb{R}^{d}\right)$,
2. g is isotropic, decreasing,
3. there exists a constant $C \geqslant 1$, such $g(x) \leqslant C g(2 x)$ for $x \in \mathbb{R}^{d}$.

Let $H_{1} \equiv \mathbb{1}_{[0, \infty)}$ and define inductively:

$$
H_{n+1} \equiv 0 \text { on }[0,2]
$$

Let $H_{1} \equiv \mathbb{1}_{[0, \infty)}$ and define inductively:

$$
H_{n+1} \equiv 0 \text { on }[0,2] \text { and for } r>2
$$

$$
H_{n+1}(r):=\frac{1}{g(r) r^{\frac{d-1}{2}}} \int_{1}^{r-1} g(r-\rho)(r-\rho)^{\frac{d-1}{2}} g(\rho) \rho^{\frac{d-1}{2}} H_{n}(\rho) d \rho
$$

Let $d \geqslant 2$, there exists constant $M>0$ such

$$
h_{n}(x) \leqslant M^{n-1} H_{n}(|x|), \quad x \in \mathbb{R}^{d}, \quad n \geqslant 1
$$

Let's come back to the example of a function

$$
f(x)=e^{-m|x|}|x|^{-\gamma}
$$

where $m>0, \gamma \in\left[0, \frac{d+1}{2}\right)$.

Estimates of convolutions

Let $|x| \geqslant 1, n \in \mathbb{N}$. Let's denote $\rho_{1}=d-\gamma$ and $\rho_{2}=\frac{d+1}{2}-\gamma$. Then there exist constants D_{1}, D_{2} such

Estimates of convolutions

Let $|x| \geqslant 1, n \in \mathbb{N}$. Let's denote $\rho_{1}=d-\gamma$ and $\rho_{2}=\frac{d+1}{2}-\gamma$. Then there exist constants D_{1}, D_{2} such

$$
D_{1}^{n-1} \frac{\Gamma\left(\rho_{1}\right)^{n}}{\Gamma\left(\rho_{1} n\right)} \leqslant \frac{f^{n \star}(x)}{f(x)|x|^{\left.\frac{d+1}{2}-\gamma\right)(n-1)}} \leqslant D_{2}^{n-1} \frac{\Gamma\left(\rho_{2}\right)^{n}}{\Gamma\left(\rho_{2} n\right)}+O\left(\frac{1}{|x|^{\frac{d+1}{2}-\gamma}}\right) .
$$

Estimates of densities of compound Poisson measure

We have

$$
f^{n \star}(x) \asymp f(x)|x|^{\left(\frac{d+1}{2}-\gamma\right)(n-1)} D^{n-1} \frac{\Gamma\left(\rho_{i}\right)^{n}}{\Gamma\left(\rho_{i} n\right)} .
$$

Estimates of densities of compound Poisson measure

We have

$$
f^{n \star}(x) \asymp f(x)|x|^{\left(\frac{d+1}{2}-\gamma\right)(n-1)} D^{n-1} \frac{\Gamma\left(\rho_{i}\right)^{n}}{\Gamma\left(\rho_{i} n\right)} .
$$

Because of that we have

$$
\begin{aligned}
p_{\lambda}(x) & =e^{-\lambda\|f\|_{1}} \sum_{n=1}^{\infty} \frac{\lambda^{n} f^{n \star}(x)}{n!} \\
& \asymp e^{-\lambda\|f\|_{1}} \sum_{n=1}^{\infty} \frac{\lambda^{n}|x|^{\left(\frac{d+1}{2}-\gamma\right)(n-1)} D^{n-1} \Gamma\left(\rho_{i}\right)^{n}}{\Gamma\left(\rho_{i} n\right) n!} .
\end{aligned}
$$

Generalized Bessel function:

$$
\phi(\rho, \beta ; t):=\sum_{n=0}^{\infty} \frac{t^{n}}{\Gamma(\rho n+\beta) n!}, \quad \rho>0, \quad \beta \geqslant 0, \quad t>0
$$

Generalized Bessel function:

$$
\phi(\rho, \beta ; t):=\sum_{n=0}^{\infty} \frac{t^{n}}{\Gamma(\rho n+\beta) n!}, \quad \rho>0, \quad \beta \geqslant 0, \quad t>0 .
$$

It's asymptotic is described in [9, Wright].

Fact
There exist $D_{1}, D_{2}>0$ (depended on $\rho i \beta$) such, as

$$
D_{1} \leqslant \frac{\phi(\rho, \beta ; t)}{t^{\frac{1-2 \beta}{2 \rho+2}} \exp \left((1+1 / \rho)(\rho t)^{\frac{1}{\rho+1}}\right)} \leqslant D_{2}, \quad t \geqslant 1 .
$$

Estimates of densities of compound Poisson measure

If $|x| \geqslant 1$ and $\lambda>0$, then exist $\rho_{1}, \rho_{2}, \kappa_{1}$ and κ_{2} such

Estimates of densities of compound Poisson measure

If $|x| \geqslant 1$ and $\lambda>0$, then exist $\rho_{1}, \rho_{2}, \kappa_{1}$ and κ_{2} such

$$
\frac{p_{\lambda}(x)}{e^{-\lambda\|f\|_{1}} e^{-m|x|}|x|^{-\frac{d+1}{2}}} \geqslant \phi\left(\rho_{1}, 0 ; \kappa_{1} \lambda|x|^{\frac{d+1}{2}-\gamma}\right)
$$

Estimates of densities of compound Poisson measure

If $|x| \geqslant 1$ and $\lambda>0$, then exist $\rho_{1}, \rho_{2}, \kappa_{1}$ and κ_{2} such

$$
\frac{p_{\lambda}(x)}{e^{-\lambda\|f\|_{1}} e^{-m|x|}|x|^{-\frac{d+1}{2}}} \geqslant \phi\left(\rho_{1}, 0 ; \kappa_{1} \lambda|x|^{\frac{d+1}{2}-\gamma}\right)
$$

and

$$
\frac{p_{\lambda}(x)}{e^{-\lambda\|f\|_{1}} e^{-m|x|}|x|^{-\frac{d+1}{2}}} \leqslant e^{M_{2} \lambda} \phi\left(\rho_{2}, 0 ; \kappa_{2} \lambda|x|^{\frac{d+1}{2}-\gamma}\right) .
$$

If $\lambda|x|^{\frac{d+1}{2}-\gamma} \geqslant 1$, then there exist constants E_{1}, E_{2}, E_{3} and E_{4} such

$$
\frac{p_{\lambda}(x)}{e^{-\lambda\|f\|_{1}} e^{-m|x|}|x|^{-\frac{d+1}{2}}} \geqslant E_{1} \exp \left(E_{2}\left(\lambda|x|^{\frac{d+1}{2}-\gamma}\right)^{\frac{1}{\rho_{1}+1}}\right)
$$

and

$$
\frac{p_{\lambda}(x)}{e^{-\lambda\|f\|_{1}} e^{-m|x|}|x|^{-\frac{d+1}{2}}} \leqslant E_{3} e^{\lambda M} \exp \left(E_{4}\left(\lambda|x|^{\frac{d+1}{2}-\gamma}\right)^{\frac{1}{\rho_{2}+1}}\right) .
$$

[1] Baraniewicz, M. and Kaleta, K. (2022). Exponential densities and compound poisson measures. arXiv:2206.02258.
[DLMF] DLMF. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.2 of 2021-06-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
[3] Embrechts, Klüppelberg, and Mikosch (1977). Modelling Extremal Events: for Insurance and Finance. Springer.
[4] Embrechts, Klüppelberg, M. (1984). An initial model of the relationship between rainfall events and daily rainfalls.
[5] Kaleta, K. and Ponikowski, D. (2020+). On directional multivariate exponential densities. preprint.
[6] Kaleta, K. and Sztonyk, P. (2019). Spatial asymptotics at infinity for geat kernels of integro-differential operators. Trans. Amer. Math. Soc., 371:6627-6663.
[7] Kamil, K. and József, L. (2019). Typical long-time behavior of ground state-transformed jump processes. Communications in Contemporary Mathematics.
[8] Sato (1999). Lévy Processes and Infinitely Divisible Distribution. Cambridge Studies in Advanced Mathematics. Cambridge University.
[9] Wright, E. M. (1935). The Asymptotic Expansion of the Generalized Bessel Function. Proceedings of the London Mathematical Society, s2-38(1):257-270.

Thank you for your attention!

