Decay of harmonic functions for discrete time Feynman-Kac operators with confining potentials

Mateusz Śliwiński

Analysis in Tatra, 2022

joint work with Wojciech Cygan and Kamil Kaleta

10.09.2022

Mateusz Śliwiński

- \circ X discrete, countably infinite state space.
- $P: X \times X \rightarrow [0, 1]$ a (sub-)probability kernel, i.e. $\sum_{y \in X} P(x, y) \leq 1$ for all $x \in X$,
- Equivalently, there exists a time-homogeneous Markov chain on X {Y_n : n ∈ N₀} such that for all x, y ∈ X

$$\mathbb{P}(Y_{n+1}=y|Y_n=x)=P(x,y).$$

Let $V : X \to (0, \infty)$ be a function such that $\inf_{x \in X} V(x) > 0$. Such function is called a *potential*. We define a semigroup of operators $\{U_n : n \in \mathbb{N}_0\}$:

$$\mathcal{U}_0 f = f, \quad \mathcal{U}_n f(x) = \mathbb{E}^x \Big[\prod_{k=0}^{n-1} \frac{1}{V(Y_k)} f(Y_n) \Big], \quad n \ge 1$$

for all admissible functions f. Observe that $U_n = U^n$, where

$$\mathcal{U}f(x) = rac{1}{V(x)} \sum_{y \in X} P(x, y) f(y), \quad x \in X.$$

The operator U - I is called *the discrete Feynman–Kac operator*.

Relations between F-K and Schrödinger operators

Consider a discrete Schrödinger operator

$$Hf(x) = \sum_{y \in X} P(x, y)(f(x) - f(y)) + V(x)f(x),$$

where $\inf_{x \in X} (V(x) + \sum_{y \in X} P(x, y)) > 0$. Then we have

$$\frac{1}{V(x) + \sum_{y \in X} P(x, y)} Hf(x) = (I - \mathcal{U})f(x),$$

where $\ensuremath{\mathcal{U}}$ is defined with a shifted potential

$$V_*(x) = V(x) + \sum_{y \in X} P(x, y).$$

This implies H and (I - U) share many analytic properties.

Our goal is to obtain estimates for (U - I)-harmonic functions. We will focus on two important cases:

- $\circ~$ Markov chains with the direct step property
- nearest-neighbour random walks

To find satisfactory estimates, we assume the following:

(A) We have P(x, y) > 0 for all $x, y \in X$, and there exists $C_* > 0$ such that

$$\sum_{z\in X} P(x,z)P(z,y) \leqslant C_* P(x,y).$$

This property is called the *direct step property* (DSP).

(B) For all M > 0, there exists a finite set $B_M \subset X$ such that $V(x) \ge M$ for $x \in B_M^c$. A potential with this property is called a *confining potential*.

In this section, we assume that (X, d) is a metric space.

Theorem

Let P(x, y) be a (sub-)probability kernel such that

$$P(x,y) \asymp J(d(x,y)), \quad x,y \in X,$$
 (1)

for a non-increasing function $J : [0, \infty) \to (0, \infty)$ which satisfies the following doubling condition: there exists a constant C > 0 such that

$$J(r) \leqslant CJ(2r), \quad \text{for all } r > 0. \tag{2}$$

Then the kernel P(x, y) satisfies assumption (A).

Let P(x, y) be a (sub-)probability kernel such that

$$P(x,y) \asymp J(d(x,y))K(d(x,y)), \quad x,y \in X,$$
(3)

where $J, K : [0, \infty) \to (0, \infty)$ are non-increasing functions such that J satisfies (2) and K is such that

$$K(r)K(s) \leqslant \widetilde{C}K(r+s), \quad r,s>0.$$
 (4)

Then the kernel P(x, y) satisfies assumption (A).

DSP can also be inherited from a subordinator.

- ∘ $\{Z_n : n \ge 0\}$ time-homogeneous Markov chain with values in X,
- $\{\tau_n : n \ge 0\}$ arbitrary increasing random walk starting at 0 with values in \mathbb{N}_0 , which is independent of $\{Z_n : n \ge 0\}$ (by saying that it is a random walk we mean that $\tau_{n+1} - \tau_n$, n = 0, 1, 2... are i.i.d. random variables)

The subordinate Markov chain $\{Y_n : n \ge 0\}$ is then defined as

$$Y_n := Z_{\tau_n}, \quad n = 0, 1, 2, \dots$$

Lemma

Suppose $\{\tau_n\}$ has the DSP, that is

$$\mathbb{P}(\tau_2 = n) \leqslant C_* \mathbb{P}(\tau_1 = n), \quad n = 2, 3, \dots$$
(5)

for some constant $C_* > 0$. Then $\{Y_n\}$ inherits the DSP with the same constant.

Proof

Since $\mathbb{P}(\tau_2 = 1) = 0$, for any $x, y \in X$ we have

$$\mathbb{P}(Y_{2} = y \mid Y_{0} = x) = \sum_{k=1}^{\infty} \mathbb{P}(Z_{k} = y \mid Z_{0} = x) \mathbb{P}(\tau_{2} = k)$$
$$\leqslant C_{*} \sum_{k=1}^{\infty} \mathbb{P}(Z_{k} = y \mid Z_{0} = x) \mathbb{P}(\tau_{1} = k)$$
$$= C_{*} \mathbb{P}(Y_{1} = y \mid Y_{0} = x),$$

as desired.

If $\{Z_n : n \ge 0\}$ is irreducible, $\{\tau_n : n \ge 0\}$ is such that (5) holds and there exists $n_0 \in \mathbb{N}$ such that

$$\mathbb{P}(\tau_1 = n) > 0, \quad n \ge n_0, \tag{6}$$

then the subordinate chain $\{Y_n : n \ge 0\}$ satisfies assumption (A).

For every finite set $B \subset X$ we define

$$\underline{K}_B := \inf \left\{ \frac{P(x, y)}{P(x, z)} : x \in X; y, z \in B \right\},\$$
$$\overline{K}_B := \sup \left\{ \frac{P(x, y)}{P(x, z)} : x \in X; y, z \in B \right\}.$$

It is easy to check that $0 < \underline{K}_B \leq \overline{K}_B < \infty$. We fix a finite set $B_0 \subset X$ such that

$$C_1 := \sup\left\{\frac{1}{V(x)} : x \in B_0^c\right\} < 1 \wedge \frac{1}{C_*}.$$

The existence of such a set is secured by assumption (B). Note that B_0 depends on V and P.

Under assumptions (A) and (B), there exists a constant $C_2 > 0$ such that for any finite set $B \subset X$ with $B \supseteq B_0$, and for any non-negative bounded function f which is subharmonic in B^c we have

$$f(x) \leq C_2 \frac{1}{V(x)} \sum_{y \in B} P(x, y) f(y), \quad x \in B^c.$$

In particular,

$$f(x) \leqslant C_2 \overline{K}_B rac{P(x,x_0)}{V(x)} \sum_{y \in B} f(y), \quad x \in B^c, \ x_0 \in B.$$

The constant C_2 depends neither on f, V, nor on the set B.

For any $D \subset X$, any non-negative function f which is superharmonic in D, and for any finite set $B \subset X$ we have

$$f(x) \ge \frac{1}{V(x)} \sum_{y \in B} P(x, y) f(y), \quad x \in D.$$

In particular, under assumption (A),

$$f(x) \ge \underline{K}_B \frac{P(x, x_0)}{V(x)} \sum_{y \in B} f(y), \quad x \in D, \ x_0 \in B.$$

Theorem (Cygan, Kaleta, MŚ)

Under assumptions (A) and (B), for any finite set $B \subset X$ with $B \supseteq B_0$, for any set $D \subset X$, and for any non-negative, non-zero and bounded function f which is harmonic in D and such that f(x) = 0 for $x \in D^c \cap B^c$ we have

$$\underline{K}_B \leqslant \frac{f(x)}{\frac{P(x,x_0)}{V(x)}\sum_{y\in B}f(y)} \leqslant C_2\overline{K}_B, \quad x\in D\cap B^c, \ x_0\in B,$$

where C_2 is independent of f, V and B. In particular, the **uniform Boundary Harnack Inequality at infinity** holds: if f and g are two such non-zero harmonic functions, then

$$\left(\frac{\underline{K}_B}{C_2\overline{K}_B}\right)^2 \leqslant \frac{f(x)g(y)}{g(x)f(y)} \leqslant \left(\frac{C_2\overline{K}_B}{\underline{K}_B}\right)^2, \quad x,y \in D \cap B^c.$$

First we impose a graph structure on X.

- Graph G = (X, E) is defined by specifying a set of *edges* $E \subset \{\{x, y\} : x, y \in X\}$. Two vertices $x, y \in X$ are connected by an edge (are neighbours) in G iff $\{x, y\} \in E$ (we have $\{x, y\} = \{y, x\}$). Notation: $x \sim y$.
- *G* is said to be *connected*, if every two different vertices *x* and *y* are connected by a path in *G*.
- *G* is said to be of *finite geometry*, if every vertex has finitely many neighbours.

Throughout this section we assume that

(C) G is a connected graph of finite geometry.

This allows us to impose a *geodesic metric* d on G, where d(x, y) is the length of the shortest path between x and y.

We consider a (sub-)probability kernel P such that

$$P(x,y) > 0 \Longleftrightarrow x \sim y. \tag{7}$$

We restrict our attention to potentials with the following property:

(D) There exist $x_0 \in X$ and an increasing profile function $W : \mathbb{N}_0 \to (0, \infty)$ such that $V(x) = W(d(x_0, x))$, for any $x \in X$.

Additionally, we use $B_r(x_0)$ to denote an open ball (with respect to d) with radius r and center x_0 .

Let assumptions (C) and (D) hold with a fixed $x_0 \in X$ and a profile function W. Let U - I be the Feynman–Kac operator corresponding to the kernel P(x, y) satisfying (7). Then for any $r \in \mathbb{N}$ and for any non-negative and bounded function f which is (U - I)-subharmonic in $B_r(x_0)^c$ we have

$$f(x) \leq \|f\|_{\infty} \prod_{i=r}^{d(x,x_0)} \frac{1}{W(i)}, \quad x \in B_r(x_0)^c.$$

To obtain the lower bound for (U - I)-superharmonic functions we consider connected and geodesically convex subsets of X.

The set $D \subset X$ is called *geodesically convex* in a graph G = (X, E) if D contains each vertex on any geodesic path connecting vertices in D.

We also need an additional regularity assumption on the kernel P(x, y):

$$M := \inf \{ P(x, y) : x, y \in X, \ x \sim y \} > 0.$$
(8)

Let assumptions (C) and (D) hold with some $x_0 \in X$ and a profile function W. Let U - I be the Feynman–Kac operator corresponding to the kernel P(x, y) satisfying (7) and (8). Then, for any connected geodesically convex set $D \subset X$, for any non-negative function f which is (U - I)-superharmonic in D, for any $x \in D$, and for any $x_r \in D$ which lies on the geodesic path connecting x with x_0 and is such that $d(x_r, x_0) = r < d(x, x_0)$, we have

$$f(x) \ge f(x_r) \prod_{i=r+1}^{d(x,x_0)} \frac{M}{W(i)}.$$

Decay of solutions to equations of graph Laplacians

Consider a kernel
$$b: X \times X \rightarrow [0, \infty)$$
 such that
(i) $b(x, y) = b(y, x)$, for every $x, y \in X$;
(ii) $\sum_{y \in X} b(x, y) > 0$, for every $x \in X$, and
 $\sup_{x \in X} \sum_{y \in X} b(x, y) < \infty$.

Let $m: X \to (0, \infty)$ be a (strictly positive) measure on X. We additionally consider a function $V: X \to \mathbb{R}$ such that $\inf_{x \in X} V(x) > -\infty$. The graph Laplacian H is defined by

$$Hf(x) = \frac{1}{m(x)} \sum_{y \in X} b(x, y)(f(x) - f(y)) + V(x)f(x),$$

for all functions

 $f \in F := \{f : X \to \mathbb{R} : \sum_{y} b(x, y) | f(y) | < \infty$, for every $x \in X\}$. The triple (X, b, V) can be seen as a weighted graph over X (two points $x, y \in X$ form an edge if and only if b(x, y) > 0). We set

$$b(x) = \sum_{y \in X} b(x, y), \qquad b^* := \sup_{x \in X} b(x), \qquad P(x, y) = \frac{b(x, y)}{b^*},$$
(9)

and

$$\widetilde{V}(x) = \begin{cases} \frac{m(x)V(x)+b(x)}{b^*}, & x \in A^c, \\ 1, & x \in A, \end{cases}$$
(10)

where $A = \{x \in X : m(x)V(x) + b(x) \leq b^*\}.$

We further assume that the operator \mathcal{U} is defined with a sub-probability kernel P(x, y) and the potential $\widetilde{V}(x)$ defined at (9) and (10).

For every $f \in F$ and $x \in A^c$ we have

$$Hf(x) = -\left(V(x) + \frac{b(x)}{m(x)}\right) (\mathcal{U} - I)f(x).$$

In particular, if $D \subset A^c$ and $f \in F$, then

 $Hf(x) \ge 0, \quad x \in D \qquad \Longleftrightarrow \qquad (\mathcal{U}-I)f(x) \le 0, \quad x \in D.$

Corollary (DSP case, upper bound)

Suppose that b(x, y), m(x) and V(x) are as above. Assume that V satisfies (B), $\inf_{x \in X} m(x) > 0$ and that

$$b(x,y) > 0, \quad \sup_{x,y \in X} \sum_{z \in X} \frac{b(x,z)b(z,y)}{b(x,y)} < \infty.$$
 (11)

Let $D \subset X$ and let f be a bounded solution to the equation $Hf(x) = 0, x \in D$. Then there exists a finite set $B_0 \subset X$ (independent of m, D and f) with $B_0 \supseteq A$ such that for any finite set $B \subset X$ with $B \supseteq B_0$ there exists a constant C > 0(independent of V, m, D and f) such that

$$|f(x)| \leq C \frac{b(x,x_0)}{m(x)V(x)+b(x)} \sum_{y\in B} |f(y)|, \quad x\in D\cap B^c, \ x_0\in B,$$

whenever f(x) = 0 for $x \in D^c \cap B^c$.

Corollary (DSP case, lower bound)

If, in addition, f is non-negative, then for any finite set $B \subset X$ with $B \supseteq B_0$ there exists a constant $\tilde{C} > 0$ (independent of V, m, D and f) such that

$$f(x) \ge \widetilde{C} \frac{b(x,x_0)}{m(x)V(x) + b(x)} \sum_{y \in B} f(y), \quad x \in D \cap B^c, \ x_0 \in B.$$

Proof. Observe that when V is a confining potential, then \overline{V} is confining as well. Realize that f is $(\mathcal{U} - I)$ -harmonic in $D \cap A^c$. To justify the upper bound, it is enough to observe that |f| is $(\mathcal{U} - I)$ -subharmonic in B^c and apply respective theorem. The corresponding lower bound is obtained directly from the proposition in the DSP case.

Suppose we are given a positive measure μ on X such that

(i)
$$\sup_{y \in X} \frac{\sum_{x \in X} \mu(x) P(x, y)}{\mu(y)} < \infty, \quad \text{(ii)} \ \sup_{x, y \in X} \frac{P(x, y)}{\mu(y)} < \infty.$$

Under condition (i), the operator \mathcal{U} is bounded in $\ell^p(X,\mu)$, for any $1 \leq p < \infty$. Condition (ii) implies that the operator $\mathcal{U}: \ell^p(X,\mu) \to \ell^\infty(X,\mu)$ is bounded for every $1 \leq p < \infty$.

Lemma

Under assumption (B), the operator \mathcal{U} is compact in $\ell^2(X, \mu)$.

We deduce that the spectrum of the operator \mathcal{U} (excluding zero) consists solely of eigenvalues. Moreover, by Jentzsch theorem, the spectral radius of \mathcal{U} is an eigenvalue, which we denote by $\lambda_0 > 0$, and the corresponding eigenfunction ψ_0 is strictly positive on X.

Let $\lambda \in \mathbb{C}$, $\lambda \neq 0$ be an eigenvalue of the operator \mathcal{U} and let $\psi \in \ell^2(X, \mu)$ be the corresponding eigenfunction, i.e. $\mathcal{U}\psi = \lambda\psi$. We then have $|\lambda||\psi| = |\mathcal{U}\psi| \leq \mathcal{U}|\psi|$, which implies $|\psi| \leq \mathcal{U}^{\lambda}|\psi|$, where

$$\mathcal{U}^{\lambda}f(x) = rac{1}{V_{\lambda}(x)}\sum_{y\in X}P(x,y)|\psi(y)|, \quad ext{with } V_{\lambda} := |\lambda|V.$$

In particular, $(\mathcal{U}^{\lambda} - I)|\psi|(x) \ge 0$, $x \in X$, i.e. the non-negative function $\varphi := |\psi|$ is $(\mathcal{U}^{\lambda} - I)$ -subharmonic in X. We show similarly that the positive function ψ_0 is $(\mathcal{U}^{\lambda} - I)$ -harmonic.

After this preparation we can apply our results to obtain an upper bound for $|\psi|$ outside of a finite set in the DSP and the nearest-neighbour case, respectively.

We can also find the matching lower bound for the positive eigenfunction ψ_0 in these two cases.

Endre Csáki

A discrete Feynman–Kac formula

Journal of Statistical Planning and Inference 34 (1993) 63-73

Wojciech Cygan, Kamil Kaleta, Mateusz Śliwiński Decay of harmonic functions for discrete time Feynman–Kac operators with confining potentials Latin American Journal of Probability and Mathematical Statistics, , 2022

Wojciech Cygan, Kamil Kaleta, René Schilling, Mateusz Śliwiński Kernel estimates for discrete Feynman–Kac operators in preparation

Thank you!

æ

Mateusz Śliwiński