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Basic definitions

Let (X , ∥·∥) is a real Banach space.
A nonempty closed and convex subset X+ ⊂ X is called order cone, if
R+X+ ⊂ X+ and X+ ∩ (−X+) = {0} hold.
Let us assume X+ ̸= {0} throughout and for elements x , x̄ ∈ X we write

x ≤ x̄ :⇔ x̄ − x ∈ X+,

x < x̄ :⇔ x̄ − x ∈ X+ \ {0},

x ≪ x̄ :⇔ x̄ − x ∈ X o
+,

where the latter relation requires X o
+ ̸= ∅ (X o

+ is the interior of X+) and
one speaks of a solid cone X+.
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Basic definitions
Let X is a real Banach space, X+ ⊂ X a cone, U ⊆ X .
A mapping F : U → X is called

monotone, if
x < x̄ ⇒ F (x) ≤ F (x̄),

strictly monotone, if

x < x̄ ⇒ F (x) < F (x̄),

strongly monotone, if

x < x̄ ⇒ F (x) ≪ F (x̄),

for all x , x̄ ∈ U.
In particular, a linear mapping T : X → X is

monotone (then called positive), if T (X+ \ {0}) ⊆ X+,

strictly monotone (then called strictly positive), if
T (X+ \ {0}) ⊆ X+ \ {0},

strongly monotone (then called strongly positive), if
T (X+ \ {0}) ⊆ X ◦

+.
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Basic definitions

We equip a compact metric space Ω with a σ-algebra A (containing the
Borel sets) and a measure µ such that (Ω,A, µ) is a measure space
satisfying µ(Ω) < ∞. The set C (Ω)d of all continuous functions
u : Ω → Rd is a real Banach space with norm ∥u∥∞ := maxx∈Ω |u(x)|.
Moreover,

C (Ω)d+ :=
{
u ∈ C (Ω)d : u(x) ∈ Y+ for all x ∈ Ω

}
abbreviates the set of continuous functions having values in the cone
Y+ ⊂ Rd .

Lemma

The set C (Ω)d+ is a cone, which is solid, provided Y+ is.

M. Nockowska-Rosiak, C. Pötzsche Monotonicity and discretization of integral operators 10/09/22 4 / 24



Basic definitions

Having identified C (Ω)d+ as (solid) cone, we introduce the relations

u ⪯ ū :⇔ ū − u ∈ C (Ω)d+,

u ≺ ū :⇔ ū − u ∈ C (Ω)d+ \ {0} ,
u ≺≺ ū :⇔ ū − u ∈ (C (Ω)d+)◦ for all u, ū ∈ C (Ω)d .

Lemma

The following holds for u, ū ∈ C (Ω)d :

1 u ⪯ ū ⇔ u(x) ≤ ū(x) for all x ∈ Ω ⇔ ⟨u(x), y ′⟩ ≤ ⟨ū(x), y ′⟩ for all
x ∈ Ω and y ′ ∈ Y ′

+.

2 u ≺ ū ⇔ u(x) ≤ ū(x) for all x ∈ Ω and u(x0) < ū(x0) for some
x0 ∈ Ω.

3 If Y+ is solid, then one has
u ≺≺ ū ⇔ u(x) ≪ ū(x) for all x ∈ Ω ⇔ ⟨u(x), y ′⟩ < ⟨ū(x), y ′⟩ for all
x ∈ Ω, y ′ ∈ Y ′

+ \ {0}.
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Fredholm integral operators

Now we want to provide sufficient conditions for Fredholm integral
operators

Ku :=

∫
Ω

K (·, y)u(y)dµ(y)

to preserve order relations. In essence, we demonstrate that
monotonicity(positivity) properties of the kernel functions carry over to
the integral operators.
We consider Fredholm operators under assumption for
K : Ω × Ω → L(Rd):

Hypothesis

(L) K (x , ·) : Ω → L(Rd) is µ-measurable for all x ∈ Ω with

sup
x∈Ω

∫
Ω

|K (x , y)|dµ(y) < ∞ and

lim
x→x0

∫
Ω

|K (x , y) − K (x0, y)|dµ(y) = 0 for all x0 ∈ Ω,

which yield that K ∈ L(C (Ω)d).
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Fredholm integral operators

Theorem (positivity of K on C(Ω)d)

Let Hypothesis (L) hold. If K(x , y) is Y+-positive for all x ∈ Ω and µ-a.a.
y ∈ Ω, then a Fredholm operator K ∈ L(C(Ω)d) is C(Ω)d+-positive.

Furthermore we denote T ∈ L(X ) as X+-injective, provided its kernel satisfies
N(T ) ∩ X+ = {0} .

Theorem (strictly positivity of K on C(Ω)d)

Let Hypothesis (L) hold and K(x , y) is Y+-positive for all x ∈ Ω and µ-a.a.
y ∈ Ω. If nonempty, open subsets of Ω have positive measure, there exists a
x̄ ∈ Ω so that K(x̄ , ·) is continuous and K(x̄ , y) is Y+-injective for µ-a.a.
y ∈ Ω, then K strictly C(Ω)d+-positive.

Theorem (strongly positivity of K on C(Ω)d)

Let Hypothesis (L) holds. If nonempty, open subsets of Ω have positive
measure, Y+ is solid and K(x , y) is strongly Y+-positive for all x ∈ Ω and
µ-almost all y ∈ Ω, then K is strongly C(Ω)d+-positive.
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Nyström methods

We suppose Ω ⊂ Rκ is compact with positive Lebesgue measure
λκ(Ω) > 0. Given a continuous function u : Ω → Rd , consider the
representation ∫

Ω

u(y)dy =

qn∑
j=0

wju(ηj) + En(u) (Qn)

with a sequence (qn)n∈N in N, nodes from a finite set
Ωn := {η0, . . . , ηqn} ⊆ Ω, weights wj ∈ R such that the remainder (error
term) satisfies limn→∞ En(u) = 0. Such schemes are called convergent.
We say that an integration rule (Qn) fulfills the net condition, if

∀ε > 0 : ∃n0 ∈ N : Ω ⊆
qn⋃
j=0

Bε(ηj) for all n ≥ n0(ε).
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Nyström methods

A natural way to evaluate the Lebesgue integral in the Fredholm operator
is to apply a rule (Qn).

Hypothesis

Assume that a kernel K : Ω × Ω → L(Rd) fulfills:

(NL) K (·, y) : Ω → L(Rd) is continuous for all y ∈ Ω.

This leads to the (spatially) discrete Fredholm integral operator

Knu :=

qn∑
j=0

wjK (·, ηj)u(ηj).

There are two natural choices for the domain of Kn, namely a spatially
continuous one C (Ω)d and the spatially discrete function space

C (Ωn)d =
{
u : Ωn → Rd

}
;

both are equipped with the max-norm. In each case, (NL) suffices to
obtain that Kn is well-defined.
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Nyström methods

Knu :=

qn∑
j=0

wjK (·, ηj)u(ηj)

Remark (Kn on the domain C (Ωn)d)

Suppose that (Qn) has nonnegative weights. Then previous Theorem
(positivity of K on C (Ω)d) applies in the special case µ = µn and
guarantees that positivity of Kn ∈ L(C (Ωn)d) or Kn ∈ L(C (Ωn)d ,C (Ω)d)
holds literally with the assumption “µ-a.a. y ∈ Ω” replaced by “all
y ∈ Ωn”.

Remark (Kn on the domain C (Ω)d)

On the domain C (Ω)d one cannot expect Kn to be strictly or strongly
positive. This is due to the fact that C (Ω)d+ \ {0} contains functions u
vanishing except from being positive on arbitrarily small domains disjoint
from Ωn. Hence, they are not captured by the Nyström grid Ωn, that is,
u|Ωn = 0 although u ̸= 0. Consequently, one has Knu = 0.
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Nyström methods

Theorem (positivity of Kn on C (Ω)d)

Let K (·, y) : Ω → L(Rd) is continuous for all y ∈ Ω hold.

1 If (Qn), n ∈ N, have nonnegative weights and K (x , η) is Y+-positive
for all x ∈ Ω, η ∈ Ωn, then Kn ∈ L(C (Ω)d) is C (Ω)d+-positive.

2 If (Qn), n ∈ N, have positive weights, Y+ is solid and
K (x , η)Y ◦

+ ⊆ Y ◦
+ for all x ∈ Ω, η ∈ Ωn, then

Kn(C (Ω)d+)◦ ⊆ (C (Ω)d+)◦.
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Nyström methods

Theorem (eventually positivity of Kn on C (Ω)d)

Let K (·, y) : Ω → L(Rd) is continuous for all y ∈ Ω, Ω = Ω◦ and (Qn)
have eventually positive weights and the net condition hold, then for each
u ∈ C (Ω)d with 0 ≺ u there exists a N ∈ N such that one has for n ≥ N:

1 If K (x , η) is Y+-positive for all x ∈ Ω, η ∈ Ωn and K (x̄ , η) is
Y+-injective for one x̄ ∈ Ω and all η ∈ Ωn, then 0 ≺ Knu.

2 If Y+ is solid and K (x , η) is strongly Y+-positive for all x ∈ Ω,
η ∈ Ωn, then 0 ≺≺ Knu.
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Collocation method

In projection method we consider a linear projection Πn ∈ L(C (Ω)d ,X d
n ),

where X d
n is a subspace of C (Ω)d with Xn = lin{ϕ1, . . . , ϕdn}. The

spatial discretizations of an integral operator K ∈ L(X (Ω)d) become

Kn := ΠnK.

One of projection method is a collocation method, in which pairwise
different collocation points x1, . . . , xdn ∈ Ω satisfy the interpolation
conditions and follow to collocation matrix

[ϕi (xj)]dni,j=1

which is denoted by Pn.
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Collocation method

Theorem (positivity of Πn on C (Ω)d)

If all the functions

σi : Ω → R, σi (x) :=
dn∑
j=1

(P−1
n )ijϕj(x) for all 1 ≤ i ≤ dn

have nonnegative values, then the following hold:

1 Πn is C (Ω)d+-positive.

2 If additionally Y+ is solid and

∀x ∈ Ω : ∃i0 ∈ {1, . . . , dn} : σi0 (x) > 0

holds, then Πn(C (Ω)d+)◦ ⊂ (C (Ω)d+)◦.
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Example

Pn = [ϕi (xj)]dni,j=1 σi (x) :=
dn∑
j=1

(P−1
n )ijϕj(x) for all 1 ≤ i ≤ dn

On the other hand, the applicability of Theorem (positivity of Πn on
C (Ω)d) is hindered by the following fact: Many bases ϕ1, . . . , ϕdn (e.g.
B-splines, Bernstein polynomials, etc.) consist of functions having
nonnegative values yielding a nonnegative collocation matrix Pn. Thus,
P−1
n has nonnegative entries, if and only if Pn is a monomial matrix, i.e.

every column/row contains exactly one positive element.
Positive projections have:

piecewise linear collocation;

polynomial interpolation;

cubic spline.

Projection which is not positive: quadratic splines.
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Collocation method

Corollary (positivity of Kn on C (Ω)d)

Let Hypothesis (L) hold and all the functions

σi : Ω → R, σi (x) :=
dn∑
j=1

(P−1
n )ijϕj(x) for all 1 ≤ i ≤ dn

have nonnegative values.

1 If K is C (Ω)d+-positive, then Kn = ΠnK ∈ L(C (Ω)d ,Xn) and
KΠn ∈ L(C (Ω)d) are C (Ω)d+-positive.

2 If K is strongly C (Ω)d+-positive, Y+ is solid and

∀x ∈ Ω : ∃i0 ∈ {1, . . . , dn} : σi0 (x) > 0

holds, then Kn = ΠnK ∈ L(C (Ω)d ,Xn) and KΠn ∈ L(C (Ω)d) are
strongly C (Ω)d+-positive.
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Urysohn integral operators

F : U → C (Ω)d , F(u) :=

∫
Ω

f (·, y , u(y))dµ(y), (F )

U :=
{
u ∈ C (Ω)d : u(x) ∈ Z for all x ∈ Ω

}
.

Let Z ⊆ Rd be nonempty. Assume for a kernel function f : Ω2 × Z → Rd :

Hypothesis

(U0) f (x , ·, z) : Ω → Rd is µ-measurable for all x ∈ Ω, z ∈ Z , for every r > 0 there
exists a µ-measurable function β0

r : Ω2 → R+ satisfying

sup
x∈Ω

∫
Ω
β0
r (x , y) dµ(y) < ∞,

such that for µ-a.a. y ∈ Ω it is |f (x , y , z)| ≤ β0
r (x , y) for all x ∈ Ω,

z ∈ Z ∩ B̄r (0) and f (·, y , ·) : Ω × Z → L(Rd ) exists as continuous function for
µ-a.a. y ∈ Ω. Furthermore, for every r > 0 there exist a µ-measurable function
γ0
r : Ω3 → R+ satisfying

lim
x→x0

∫
Ω
γ0
r (x , x0, y) dµ(y) = 0 for all x0 ∈ Ω,

such that for µ-a.a. y ∈ Ω one has |f (x , y , z) − f (x̄ , y , z)| ≤ γ0
r (x , x̄ , y) for all

x , x̄ ∈ Ω, z ∈ Z ∩ B̄r (0).
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Urysohn integral operators

Theorem (properties of F)

Let Hypothesis (U0) hold.

1 If for all x ∈ Ω and µ-a.a. y ∈ Ω a kernel function
f (x , y , ·) : Z → Rd is Y+-monotone, then an Urysohn operator
F : U → C (Ω)d is C (Ω)d+-monotone.

2 If nonempty, open subsets of Ω have positive measure and suppose
there exists a x̄ ∈ Ω such that f (x̄ , ·) is continuous. If for all x ∈ Ω
and µ-a.a. y ∈ Ω a kernel function f (x , y , ·) : Z → Rd is
Y+-monotone and f (x̄ , y , ·) : Z → Rd is strictly Y+-monotone for
µ-a.a. y ∈ Ω, then an Urysohn operator F : U → C (Ω)d is strictly
C (Ω)d+-monotone.

3 If nonempty, open subsets of Ω have positive measure and let Y+ be
solid. If for all x ∈ Ω and µ-a.a. y ∈ Ω a kernel function
f (x , y , ·) : Z → Rd is strongly Y+-monotone, then an Urysohn
operator F : U → C (Ω)d is strongly C (Ω)d+-monotone.
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Urysohn integral operators

Under the additional Hypothesis (U1) the derivative of F exists as

DF(u)v =

∫
Ω

D3f (·, y , u(y))v(y)dµ(y) for all v ∈ C (Ω)d

in the Fréchet-sense (in u ∈ U◦); moreover F is of class C 1.

Corollary (monotonicity of F)

Let (U0), (U1) hold on a Y+-convex and open Z ⊆ Rd . If D3f (x , y , z) is
Y+-positive for all x ∈ Ω, z ∈ Z and µ-a.a. y ∈ Ω, then F is
C (Ω)d+-monotone. In addition, if nonempty, open subsets of Ω have
positive measure and moreover

1 there exists a x̄ ∈ Ω so that f (x̄ , ·) is continuous and for µ-a.a.
y ∈ Ω and all z , z̄ ∈ Z , z < z̄ the derivative D3f (x̄ , y , z∗) is
Y+-injective for all z∗ ∈ z , z̄ , then F is strictly C (Ω)d+-monotone,

2 Y+ is solid and D3f (x , y , z) is strongly Y+-positive for all x ∈ Ω,
z ∈ Z and µ-a.a. y ∈ Ω, then F is strongly C (Ω)d+-monotone.
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Nyström method

Applied to Urysohn operators (F ) (with the Lebesgue measure µ = λκ)
one arrives at the discrete Urysohn operator

Fn(u) :=

qn∑
j=0

wj f (·, ηj , u(ηj)). (F n)

Let Z ⊆ Rd have nonempty interior. Assume that a kernel function
f : Ω2 × Z → Rd fulfills the following continuity conditions:

Hypothesis

(NU0) f : Ω2 × Z → Rd exists as continuous function.

Notice that (NU0) implies the above Hypothesis (U0). Furthermore, the
discrete operator (??) allows the natural domains

U :=
{
u ∈ C (Ω)d : u(x) ∈ Z for all x ∈ Ω

}
and Un := {u : Ωn → Z}. In both cases, (NU0) ensures that Fn is

well-defined on U and Un.
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Nyström method

Theorem (properties of Fn on U)

Let Hypothesis (NU0) hold.

1 If for all x ∈ Ω and η ∈ Ωn a kernel function f (x , η, ·) : Z → Rd is
Y+-monotone and (Qn), n ∈ N, has nonnegative weights, then a
discrete Urysohn operator Fn : U → C (Ω)d is C (Ω)d+-monotone.

2 If Ω = Ω◦ and (Qn) satisfying the net condition with eventually
positive weights. For each u, ū ∈ U, u ≺ ū there exists a N ∈ N
such that one has for n ≥ N: If for all x ∈ Ω, η ∈ Ωn a kernel
function f (x , η, ·) : Z → Rd is Y+-monotone and f (x̄ , η, ·) is strictly
Y+-monotone for one x̄ ∈ Ω and all η ∈ Ωn, then Fn(u) ≺ Fn(ū).

3 If Ω = Ω◦, solid Y+ and (Qn) satisfying the net condition with
eventually positive weights. For each u, ū ∈ U, u ≺ ū there exists a
N ∈ N such that one has for n ≥ N: If for all x ∈ Ω, η ∈ Ωn a kernel
function f (x , η, ·) : Z → Rd is strongly Y+-monotone, then
Fn(u) ≺≺ Fn(ū).
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Nyström method

Theorem (necessary condition for monotonicity of Fn on Un)

Let Hypothesis (NU0) hold. If a discrete Urysohn operator
Fn : Un → C (Ωn)d is strictly C (Ωn)d+-monotone on Un for some n ∈ N
and f (x , η, ·) : Z → Rd is Y+-monotone for all x ∈ Ω, η ∈ Ωn, then
quadrature rules (Qn) has positive weights.
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Thank you for attention
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