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Motivation

@ Diffusion-reaction model
w4 (—A)*?u+ c(t,x)u = 0.

M. Yamamoto, Asymptotic expansion of solutions to the
dissipative equation with fractional Laplacian, SIAM J. Math.
Anal. 44(6) (2012) 3786—3805.
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Motivation

@ Diffusion-reaction model
w4 (—A)*?u+ c(t,x)u = 0.

M. Yamamoto, Asymptotic expansion of solutions to the
dissipative equation with fractional Laplacian, SIAM J. Math.
Anal. 44(6) (2012) 3786—3805.

@ Drift-diffusion model for semiconductor
u+ (—Au)? =V - (uVy) =0, —AYp = u.

M. Yamamoto, Y. Sugiyama, Asymptotic expansion of solutions to
the drift-diffusion equation with fractional dissipation, Nonlinear
Analysis: Theory, Methods and Applications, Volume 14 (2016)
57-87.
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Various definitions

e M. Kwasnicki, Ten equivalent definitions of the fractional Laplace
operator, Fract. Calc. Appl. Anal. 20 2017, 7-51.
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Various definitions

e M. Kwasnicki, Ten equivalent definitions of the fractional Laplace
operator, Fract. Calc. Appl. Anal. 20 2017, 7-51.

@ R. Servadei, E. Valdinoci, On the spectrum of different two fractional
operators, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 831-855.
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Spectral approach

Let O C RN be an open and bounded with regular boundary (lip-
schitzian),
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Spectral approach

Let O C RN be an open and bounded with regular boundary (lip-
schitzian), (—A): L*(Q)) € Dom(—A) — L?(Q) be the weak Dirichlet-
Laplacian, i.e. it is Friedrich’s extension of the classical Dirichlet-Laplace
operator (—A).: C2(Q) — L?(Q) to a self-adjoint operator.

If ) being of class C2or Q) being cuboid, we have —A = (—A),, where
(—A)s: HY(Q) N H?*(Q)) — L*(Q)) means the strong Dirichlet-Laplace
operator.

@ —Ais self-adjoint and positive.
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Spectral approach

Let O C RN be an open and bounded with regular boundary (lip-
schitzian), (—A): L*(Q)) € Dom(—A) — L?(Q) be the weak Dirichlet-
Laplacian, i.e. it is Friedrich’s extension of the classical Dirichlet-Laplace
operator (—A).: C2(Q) — L?(Q) to a self-adjoint operator.

If ) being of class C2or Q) being cuboid, we have —A = (—A),, where
(—A)s: HY(Q) N H?*(Q)) — L*(Q)) means the strong Dirichlet-Laplace
operator.

@ —Ais self-adjoint and positive.

@ 0(—A) = {A,: n € N} consists of positive eigenvalues.

o (—A)u= Z Ay (u, e,) e,, where e, — eigenfunctions.
n=1
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Let O C RN be an open and bounded with regular boundary (lip-
schitzian), (—A): L*(Q)) € Dom(—A) — L?(Q) be the weak Dirichlet-
Laplacian, i.e. it is Friedrich’s extension of the classical Dirichlet-Laplace
operator (—A).: C2(Q) — L?(Q) to a self-adjoint operator.

If ) being of class C2or Q) being cuboid, we have —A = (—A),, where
(—A)s: HY(Q) N H?*(Q)) — L*(Q)) means the strong Dirichlet-Laplace
operator.
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o (—A)u= Z Ay (u, e,) e,, where e, — eigenfunctions.
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Spectral approach

g(=D)u:=) (M) (u,en)en,

et
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Poisson equation with generalized laplacian

We obtained some results for Poisson equation with generalized
fractional laplacian (I.K., B.Przeradzki, Rev. R. Acad. Cienc. Exactas
Fis. Nat. Ser. A Mat. RACSAM 115 (2), Paper No. 58 (2021))

g(~B)u = f(x,u).
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Heat equation with generalized Laplacian

ur+ g(—=A)u = f(t,x,u), u(t,00) =0, u(0,-) = uo,
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Heat equation with generalized Laplacian

ur+ g(—=A)u = f(t,x,u), u(t,00) =0, u(0,-) = uo,

g is positive, f: [0,00) x (3 x R — R is a Carathéodory function such
that

(8, x,u)| < ao(t)a(x) + blul,
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Heat equation with generalized Laplacian

ur+ g(—=A)u = f(t,x,u), u(t,00) =0, u(0,-) = uo,

g is positive, f: [0,00) x (3 x R — R is a Carathéodory function such
that

(8, x,u)| < ao(t)a(x) + blul,

where ag: [0,00) — R is continuous, a € L2(Q), b > 0. Assume that the
initial function ug € L2 (Q) Putting in the problem Fourier series

expansions u(t, ) = Z uy(t)en(+), ug = Z Ug,nen, we have
n=1

p (£) + g (An)un(t) = ful(t) (u),

where

Fa0)(0) 1= [ 0t 3))en(x) .
Q
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Heat equation with generalized Laplacian

Hence

t
Un(£) = tin g8 4 / e85 ()(u) ds
0
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Heat equation with generalized Laplacian

Hence
t

Uy (t) = 1, e 8N t—i—/e g(A Jfu(s) (u) ds
0

Fix T > 0 and search for solutions on the interval [0, T].
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Heat equation with generalized Laplacian

Hence
t

Uy (t) = 1, e 8N t—i—/e g(A Jfu(s) (u) ds
0

Fix T > 0 and search for solutions on the interval [0, T]. Let X be a

Banach space of sequences of real continuous functions u, : [0,T] — R,
n € IN, such that

[ee]

[l ==} sup |ua(t)|* < oo,

n=1t€[0,T]

where 1 = (U )neN-
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Heat equation with generalized Laplacian

Suppose that

Yo <.

n=1 g<A”)2
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Heat equation with generalized Laplacian

Suppose that
i .
8(An)?

n=1
Then the operator S defined by

< 0.

t

(S(0))u(t) 1= vp e S 4 / e SM=S)E (5 (0) ds
0
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0
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Heat equation with generalized Laplacian

Suppose that

i 1
Z g(An)?

n=1
Then the operator S defined by

< 0.

t

(S(0))u(t) == vg e 84" 4 / e $MIIE (5) (v) ds
0
for v = (vy)men € X, maps X into itself. Moreover, S is compact and if

b < 1, then S maps a ball in X with sufficiently large radius into itself.
By Schauder Fixed Point Theorem we obtain.
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Heat equation with generalized Laplacian

Suppose that
i .
8002

n=1

< 0.

Then the operator S defined by
t
(S(0))n(t) := vp e M) 4 / e $MIIE (5) (v) ds
0

for v = (vy)men € X, maps X into itself. Moreover, S is compact and if
b < 1, then S maps a ball in X with sufficiently large radius into itself.
By Schauder Fixed Point Theorem we obtain.

The initial-boundary value problem for heat equation with g(—A) has
a solution.
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Asymptotic behaviour of solutions

e+ g(=Mu=flx,u), ult, oo =0, u(0,)=u €l*Q), (1)

g(=DN)u = f(x,u), ulpn = 0. ()
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Asymptotic behaviour of solutions

e+ g(=Mu=flx,u), ult, oo =0, u(0,)=u €l*Q), (1)

g(_A>u =f(x,u), ”|ao =0. (2)
Suppose f satisfies the Lipschitz condition

[f(x,u) = f(x,0)] < Lju -0

forany u,v € Rand a.e. x € (O, where L < §:= inﬂgg(/\n). Then (2)
ne

has the unique solution w and
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Asymptotic behaviour of solutions

e+ g(=Mu=flx,u), ult, oo =0, u(0,)=u €l*Q), (1)

g(_A>u =f(x,u), ”|ao =0. (2)
Suppose f satisfies the Lipschitz condition

[f(x,u) = f(x,0)] < Lju -0

forany u,v € Rand a.e. x € (O, where L < §:= inﬂgg(/\n). Then (2)
ne

has the unique solution w and all solutions u to (1) tend to w in L?(Q))
ast — +oo:

timu(t, ) —w] =o0.
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Applications of Semigroups

Let ¢ be a real function defined on the spectrum (A, ),en of the Dirichlet
Laplacian such that lim,,_,c g(A4) = +00.

Definition

T(Hu=Y e 8™ty e)e,  foruec L*(Q).

n=1
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Applications of Semigroups

Let ¢ be a real function defined on the spectrum (A, ),en of the Dirichlet
Laplacian such that lim,,_,c g(A4) = +00.

T(Hhu=Y e 8 (y,e,) e, for u € L2(Q).

n=1
.

The family {T(t) }+>0 is Co-semigroup in L?(Q) with infinitesimal
generator —g(—A).
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e
Applications of Semigroups

We consider the following semilinear initial value problem
' (t) = Au(t) +f(tu(t),  u(0) =u, ®)
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e
Applications of Semigroups

We consider the following semilinear initial value problem

' (t) = Au(t) +f(tu(t),  u(0) =u, ®)
A - generator of Co—semigroup {T(t)}+>0,f: X x [0,00) — X — continuous. A solution

t
u € C([0,00), X) of the integral equation u(t) = T(t)ug + [ T(t —s)f (s, u(s)) ds is called
0

a mild solution of (3).
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Applications of Semigroups

We consider the following semilinear initial value problem

w'(t) = Au(t) +f(t,u(t),  u(0) = u, ®)

A - generator of Co—semigroup {T(#)};>0, f: X x [0,00) — X — continuous. A solution
t

u € C([0, ), X) of the integral equation u(t) = T(H)ug + [ T(t — s)f (s, u(s)) ds is called
0

a mild solution of (3).

If A is the generator of a compact semigroup {T () };>0, f: [0,00) x U — X is
continuous, where U C X is open then for every 1y € U there exists a f; € (0,00) (3)
has a mild solution u € C([0,t1,], X).
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Applications of Semigroups

We consider the following semilinear initial value problem
' (t) = Au(t) +f(tu(t),  u(0) =u, ®)
A - generator of Co—semigroup {T(#)};>0, f: X x [0,00) — X — continuous. A solution

t
u € C([0, ), X) of the integral equation u(t) = T(H)ug + [ T(t — s)f (s, u(s)) ds is called
0
a mild solution of (3).

If A is the generator of a compact semigroup {T () };>0, f: [0,00) x U — X is

continuous, where U C X is open then for every 1y € U there exists a f; € (0,00) (3)
has a mild solution u € C([0,t1,], X).

v

Let A be the infinitesimal generator of a compact semigroup {T(t) };>0. Let

f:1]0,+00) x X — X be continuous and maps bounded sets in [0, +o0) x X into
bounded sets in X. Then for every 1 € X the initial value problem (3) has a global
solution u € C([0, +00), X) if there exist two locally integrable functions

ky,ky: [0, +00) — [0, +00) such that ||f (¢, u)|| < ki () ||u|| +ka(t) fort € [0, +00),u € X.
-
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Applications of Semigroups

For the operator A = —g(—A), and mapping f(t,u) = f(t,-,u(-)) for
t >0, u € L?(Q), the initial-boundary value problem

Ut +g(_A)u :f(t,x,u), ”(tl )|BQ =0, M(O, ) =ug € LZ(Q) 4)

can be rewritten as (3).
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e
Applications of Semigroups

For the operator A = —g(—A), and mapping f(t,u) = f(t,-,u(-)) for
t >0, u € L?(Q), the initial-boundary value problem

Ut +g(_A)u :f(t,x,u), ”(tl )|BQ =0, M(O/ ) =1Up € LZ(Q) (4)
can be rewritten as (3). We assume that lim,,_,c ¢(A,) = 400 and
f:[0,00) x QxR — R

is continuous w.r.t. (t,u) for a.e. x, measurable w.r.t. x for each t and u
and

[f (£, x,u)| < ao(t)a(x) + blul,
where ag: [0,00) — [0, +00) is continuous, a € L?(Q) and b > 0.
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Applications of Semigroups

For the operator A = —g(—A), and mapping f(t,u) = f(t,-,u(-)) for
t >0, u € L?(Q), the initial-boundary value problem

u+g(—Mu=f(t,x,u), ult,)sa=0 u0,")=uycl?>Q) 4
can be rewritten as (3). We assume that lim,,_,c ¢(A,) = 400 and
f:[0,00) x QxR — R

is continuous w.r.t. (£, u) for a.e. x, measurable w.r.t. x for each t and u
and

(& x,u)| < ao(t)a(x) + blul,
where ag: [0,00) — [0, +00) is continuous, a € L?(Q) and b > 0.

Under the above assumptions, the problem (4) has a global mild
solution.

Igor Kossowski Nonlinear equations



Numerical simulations

We will use the simplest method for finding an approximate solution —
a partial sum of the Fourier series

u(t,x) = i Uy (£)en(x).

One can find the explicit formulas for all functions if the right-hand
side f has the simple form bu + f(x) and Q := (0, ) C R. We have

Ja

1) = (s b ) (- 0%) 0+ b

where f, is the n-th Fourier coefficient of x — f(x).
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Solutions to our problem for f(x) =1, b

up(x) = x(m — x)

9(z) =z

2.0
15
1.0
0.5

0.0
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0.5

0.0

9(2)

=sin’z




Solutions to our problem for f(x) =1,b =

up(x) = x(m — x)

9(2)

80000

60000

10000

20000

g(z) = 206 g(z) =sin? 2

80000

60000

10000




Solutions to our problem for f(x) = 1 — cos2x, b =4,
up(x) = x(7 — x)

06 g(z) =sin? 2

X101

3.0
25
2.0
15
10
0.5
0.0

3.0
25
2.0
15
1.0
0.5
0.0
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Thank you for your attention.
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