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Motivation

Diffusion-reaction model

ut + (−∆)α/2u + c(t, x)u = 0.

M. Yamamoto, Asymptotic expansion of solutions to the
dissipative equation with fractional Laplacian, SIAM J. Math.
Anal. 44(6) (2012) 3786—3805.
Drift-diffusion model for semiconductor

ut + (−∆u)θ/2 −∇ · (u∇ψ) = 0, −∆ψ = u.

M. Yamamoto, Y. Sugiyama, Asymptotic expansion of solutions to
the drift–diffusion equation with fractional dissipation, Nonlinear
Analysis: Theory, Methods and Applications, Volume 14 (2016)
57–87.
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Various definitions

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace
operator, Fract. Calc. Appl. Anal. 20 2017, 7-51.

R. Servadei, E. Valdinoci, On the spectrum of different two fractional
operators, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 831–855.
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Spectral approach

Let Ω ⊂ RN be an open and bounded with regular boundary (lip-
schitzian),

(−∆) : L2(Ω) ⊂ Dom(−∆) → L2(Ω) be the weak Dirichlet-
Laplacian, i.e. it is Friedrich’s extension of the classical Dirichlet-Laplace
operator (−∆)c : C∞

c (Ω)→ L2(Ω) to a self-adjoint operator.
If Ω being of class C2 or Ω being cuboid, we have −∆ = (−∆)s, where
(−∆)s : H1

0(Ω) ∩ H2(Ω) → L2(Ω) means the strong Dirichlet-Laplace
operator.

Properties of −∆

−∆ is self-adjoint and positive.
σ(−∆) = {λn : n ∈N} consists of positive eigenvalues.

(−∆)u =
∞

∑
n=1

λn 〈u, en〉 en, where en – eigenfunctions.
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Spectral approach

Definition

g(−∆)u :=
∞

∑
n=1

g(λn) 〈u, en〉 en,

where g : σ(−∆)→ R,

Dom g(−∆) :=
{

u ∈ L2(Ω) :
∞

∑
n=1

g(λn)
2| 〈u, en〉 |2 < ∞

}
.
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Poisson equation with generalized laplacian

We obtained some results for Poisson equation with generalized
fractional laplacian (I.K., B.Przeradzki, Rev. R. Acad. Cienc. Exactas
Fis. Nat. Ser. A Mat. RACSAM 115 (2), Paper No. 58 (2021))

g(−∆)u = f (x, u).
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Heat equation with generalized Laplacian

ut + g(−∆)u = f (t, x, u), u(t, ∂Ω) = 0, u(0, ·) = u0,

g is positive, f : [0, ∞)×Ω×R→ R is a Carathéodory function such
that

|f (t, x, u)| ≤ a0(t)a(x) + b|u|,
where a0 : [0, ∞)→ R is continuous, a ∈ L2(Ω), b ≥ 0. Assume that the
initial function u0 ∈ L2(Ω). Putting in the problem Fourier series

expansions u(t, ·) =
∞
∑

n=1
un(t)en(·), u0 =

∞
∑

n=1
u0,nen, we have

u′n(t) + g(λn)un(t) = fn(t)(u),

where
fn(t)(u) :=

�

Ω

f (t, y, u(t, y))en(x)dy.
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Heat equation with generalized Laplacian

Hence

un(t) = un,0e−g(λn)t +

t�

0

e−g(λn)(t−s)fn(s)(u)ds

Fix T > 0 and search for solutions on the interval [0, T]. Let X be a
Banach space of sequences of real continuous functions un : [0, T]→ R,
n ∈N, such that

‖u‖2 :=
∞

∑
n=1

sup
t∈[0,T]

|un(t)|2 < ∞,

where u = (un)n∈N.
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Heat equation with generalized Laplacian

Suppose that
∞

∑
n=1

1
g(λn)2 < ∞.

Then the operator S defined by

(S(v))n(t) := v0,ne−g(λn)t +

t�

0

e−g(λn)(t−s)fn(s)(v)ds

for v = (vm)m∈N ∈ X, maps X into itself. Moreover, S is compact and if
b < 1, then S maps a ball in X with sufficiently large radius into itself.
By Schauder Fixed Point Theorem we obtain.

Theorem 5
The initial-boundary value problem for heat equation with g(−∆) has
a solution.
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Asymptotic behaviour of solutions

Theorem 6

ut + g(−∆)u = f (x, u), u(t, ·)|∂Ω = 0, u(0, ·) = u0 ∈ L2(Ω), (1)

g(−∆)u = f (x, u), u|∂Ω = 0. (2)

Suppose f satisfies the Lipschitz condition

|f (x, u)− f (x, v)| ≤ L|u− v|

for any u, v ∈ R and a.e. x ∈ Ω, where L < β := inf
n∈N

g(λn). Then (2)

has the unique solution w and all solutions u to (1) tend to w in L2(Ω)
as t→ +∞ :

lim
t→+∞

‖u(t, ·)−w‖ = 0.
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Applications of Semigroups

Let g be a real function defined on the spectrum (λn)n∈N of the Dirichlet
Laplacian such that limn→∞ g(λn) = +∞.

Definition

T(t)u =
∞

∑
n=1

e−g(λn)t 〈u, en〉 en for u ∈ L2(Ω).

Proposition

The family {T(t)}t≥0 is C0-semigroup in L2(Ω) with infinitesimal
generator −g(−∆).
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Applications of Semigroups
We consider the following semilinear initial value problem

u′(t) = Au(t) + f (t, u(t)), u(0) = u0, (3)

A – generator of C0–semigroup {T(t)}t≥0, f : X× [0, ∞) → X – continuous. A solution

u ∈ C([0, ∞), X) of the integral equation u(t) = T(t)u0 +
t�

0
T(t− s)f (s, u(s))ds is called

a mild solution of (3).

Theorem

If A is the generator of a compact semigroup {T(t)}t≥0, f : [0, ∞)×U→ X is
continuous, where U ⊂ X is open then for every u0 ∈ U there exists a t1 ∈ (0, ∞) (3)
has a mild solution u ∈ C([0, t1, ], X).

Theorem

Let A be the infinitesimal generator of a compact semigroup {T(t)}t≥0. Let
f : [0,+∞)×X→ X be continuous and maps bounded sets in [0,+∞)×X into
bounded sets in X. Then for every u0 ∈ X the initial value problem (3) has a global
solution u ∈ C([0,+∞), X) if there exist two locally integrable functions
k1, k2 : [0,+∞)→ [0,+∞) such that ‖f (t, u)‖ ≤ k1(t) ‖u‖+ k2(t) for t ∈ [0,+∞), u ∈ X.
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Applications of Semigroups

For the operator A = −g(−∆), and mapping f (t, u) = f (t, ·, u(·)) for
t ≥ 0, u ∈ L2(Ω), the initial-boundary value problem

ut + g(−∆)u = f (t, x, u), u(t, ·)|∂Ω = 0, u(0, ·) = u0 ∈ L2(Ω) (4)

can be rewritten as (3).

We assume that limn→∞ g(λn) = +∞ and

f : [0, ∞)×Ω×R→ R

is continuous w.r.t. (t, u) for a.e. x, measurable w.r.t. x for each t and u
and

|f (t, x, u)| ≤ a0(t)a(x) + b|u|,
where a0 : [0, ∞)→ [0,+∞) is continuous, a ∈ L2(Ω) and b ≥ 0.

Theorem 7
Under the above assumptions, the problem (4) has a global mild
solution.
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Numerical simulations

We will use the simplest method for finding an approximate solution –
a partial sum of the Fourier series

u(t, x) =
∞

∑
n=1

un(t)en(x).

One can find the explicit formulas for all functions if the right-hand
side f has the simple form bu + f (x) and Ω := (0, π) ⊂ R. We have

en(x) :=

√
2
π

sin nx,

un(t) :=
(

un,0 −
fn

g(n2)− b

)
exp(−(g(n2)− b)t) +

fn
g(n2)− b

,

where fn is the n-th Fourier coefficient of x 7→ f (x).
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Solutions to our problem for f (x) ≡ 1, b = 0,
u0(x) = x(π − x)

t

0
2

4
6

8
10

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0

u

0.0

0.5

1.0

1.5

2.0

g(z) = z

t

0
2

4
6

8
10

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0

u

0.0

0.5

1.0

1.5

2.0

g(z) = z0.6

t

0
2

4
6

8
10

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0

u

0

1

2

3

4

g(z) = sin2 z
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Solutions to our problem for f (x) ≡ 1, b = 2,
u0(x) = x(π − x)

t

0
2

4
6

8
10

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0

u

0

20000

40000

60000

80000

g(z) = z

t

0
2

4
6

8
10

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0

u

0

20000

40000

60000

80000

g(z) = z0.6

t

0
2

4
6

8
10

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0

u

×
10

7

−6

−4

−2

0

2

4

6

8

g(z) = sin2 z
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Solutions to our problem for f (x) = 1− cos 2x, b = 4,
u0(x) = x(π − x)

t

0
2

4
6

8
10

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0

u

×
10

1
3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g(z) = z

t

0
2

4
6

8
10

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0

u

×
10

1
3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g(z) = z0.6

t

0
2

4
6

8
10

x

0.0
0.5

1.0
1.5

2.0
2.5

3.0

u

×
10

1
5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

g(z) = sin2 z
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Thank you for your attention.

Igor Kossowski Nonlinear equations 18 / 18


