Nonlocal heat equations with generalized fractional Laplacian

Igor Kossowski (joint work with Bogdan Przeradzki)

Institute of Mathematics, Lodz University of Technology
Analysis in Tatra Seminar for researchers, Małe Ciche, September 7-11, 2022

Motivation

Motivation

- Diffusion-reaction model

$$
u_{t}+(-\Delta)^{\alpha / 2} u+c(t, x) u=0 .
$$

M. Yamamoto, Asymptotic expansion of solutions to the dissipative equation with fractional Laplacian, SIAM J. Math. Anal. 44(6) (2012) 3786-3805.

Motivation

- Diffusion-reaction model

$$
u_{t}+(-\Delta)^{\alpha / 2} u+c(t, x) u=0 .
$$

M. Yamamoto, Asymptotic expansion of solutions to the dissipative equation with fractional Laplacian, SIAM J. Math.
Anal. 44(6) (2012) 3786-3805.

- Drift-diffusion model for semiconductor

$$
u_{t}+(-\Delta u)^{\theta / 2}-\nabla \cdot(u \nabla \psi)=0, \quad-\Delta \psi=u
$$

M. Yamamoto, Y. Sugiyama, Asymptotic expansion of solutions to the drift-diffusion equation with fractional dissipation, Nonlinear Analysis: Theory, Methods and Applications, Volume 14 (2016) 57-87.

Various definitions

- M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20 2017, 7-51.

Various definitions

- M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20 2017, 7-51.
- R. Servadei, E. Valdinoci, On the spectrum of different two fractional operators, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 831-855.

Spectral approach

Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded with regular boundary (lipschitzian),

Spectral approach

Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded with regular boundary (lipschitzian), $(-\Delta): L^{2}(\Omega) \subset \operatorname{Dom}(-\Delta) \rightarrow L^{2}(\Omega)$ be the weak DirichletLaplacian,

Spectral approach

Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded with regular boundary (lipschitzian), $(-\Delta): L^{2}(\Omega) \subset \operatorname{Dom}(-\Delta) \rightarrow L^{2}(\Omega)$ be the weak DirichletLaplacian, i.e. it is Friedrich's extension of the classical Dirichlet-Laplace operator $(-\Delta)_{\mathrm{c}}: C_{\mathrm{c}}^{\infty}(\Omega) \rightarrow L^{2}(\Omega)$ to a self-adjoint operator.

Spectral approach

Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded with regular boundary (lipschitzian), $(-\Delta): L^{2}(\Omega) \subset \operatorname{Dom}(-\Delta) \rightarrow L^{2}(\Omega)$ be the weak DirichletLaplacian, i.e. it is Friedrich's extension of the classical Dirichlet-Laplace operator $(-\Delta)_{c}: C_{c}^{\infty}(\Omega) \rightarrow L^{2}(\Omega)$ to a self-adjoint operator. If Ω being of class C^{2} or Ω being cuboid, we have $-\Delta=(-\Delta)_{s}$, where $(-\Delta)_{s}: H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \rightarrow L^{2}(\Omega)$ means the strong Dirichlet-Laplace operator.

Spectral approach

Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded with regular boundary (lipschitzian), $(-\Delta): L^{2}(\Omega) \subset \operatorname{Dom}(-\Delta) \rightarrow L^{2}(\Omega)$ be the weak DirichletLaplacian, i.e. it is Friedrich's extension of the classical Dirichlet-Laplace operator $(-\Delta)_{c}: C_{c}^{\infty}(\Omega) \rightarrow L^{2}(\Omega)$ to a self-adjoint operator. If Ω being of class C^{2} or Ω being cuboid, we have $-\Delta=(-\Delta)_{s}$, where $(-\Delta)_{s}: H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \rightarrow L^{2}(\Omega)$ means the strong Dirichlet-Laplace operator.

Properties of $-\Delta$

- $-\Delta$ is self-adjoint and positive.

Spectral approach

Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded with regular boundary (lipschitzian), $(-\Delta): L^{2}(\Omega) \subset \operatorname{Dom}(-\Delta) \rightarrow L^{2}(\Omega)$ be the weak DirichletLaplacian, i.e. it is Friedrich's extension of the classical Dirichlet-Laplace operator $(-\Delta)_{c}: C_{c}^{\infty}(\Omega) \rightarrow L^{2}(\Omega)$ to a self-adjoint operator. If Ω being of class C^{2} or Ω being cuboid, we have $-\Delta=(-\Delta)_{s}$, where $(-\Delta)_{s}: H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \rightarrow L^{2}(\Omega)$ means the strong Dirichlet-Laplace operator.

Properties of $-\Delta$

- $-\Delta$ is self-adjoint and positive.
- $\sigma(-\Delta)=\left\{\lambda_{n}: n \in \mathbb{N}\right\}$ consists of positive eigenvalues.

Spectral approach

Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded with regular boundary (lipschitzian), $(-\Delta): L^{2}(\Omega) \subset \operatorname{Dom}(-\Delta) \rightarrow L^{2}(\Omega)$ be the weak DirichletLaplacian, i.e. it is Friedrich's extension of the classical Dirichlet-Laplace operator $(-\Delta)_{c}: C_{c}^{\infty}(\Omega) \rightarrow L^{2}(\Omega)$ to a self-adjoint operator. If Ω being of class C^{2} or Ω being cuboid, we have $-\Delta=(-\Delta)_{s}$, where $(-\Delta)_{s}: H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \rightarrow L^{2}(\Omega)$ means the strong Dirichlet-Laplace operator.

Properties of $-\Delta$

- $-\Delta$ is self-adjoint and positive.
- $\sigma(-\Delta)=\left\{\lambda_{n}: n \in \mathbb{N}\right\}$ consists of positive eigenvalues.
- $(-\Delta) u=\sum_{n=1}^{\infty} \lambda_{n}\left\langle u, e_{n}\right\rangle e_{n}$, where e_{n} - eigenfunctions.

Spectral approach

Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded with regular boundary (lipschitzian), $(-\Delta): L^{2}(\Omega) \subset \operatorname{Dom}(-\Delta) \rightarrow L^{2}(\Omega)$ be the weak DirichletLaplacian, i.e. it is Friedrich's extension of the classical Dirichlet-Laplace operator $(-\Delta)_{c}: C_{c}^{\infty}(\Omega) \rightarrow L^{2}(\Omega)$ to a self-adjoint operator. If Ω being of class C^{2} or Ω being cuboid, we have $-\Delta=(-\Delta)_{s}$, where $(-\Delta)_{s}: H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \rightarrow L^{2}(\Omega)$ means the strong Dirichlet-Laplace operator.

Properties of $-\Delta$

- $-\Delta$ is self-adjoint and positive.
- $\sigma(-\Delta)=\left\{\lambda_{n}: n \in \mathbb{N}\right\}$ consists of positive eigenvalues.
- $(-\Delta) u=\sum_{n=1}^{\infty} \lambda_{n}\left\langle u, e_{n}\right\rangle e_{n}$, where e_{n} - eigenfunctions.

Spectral approach

Definition

$$
g(-\Delta) u:=\sum_{n=1}^{\infty} g\left(\lambda_{n}\right)\left\langle u, e_{n}\right\rangle e_{n}
$$

Spectral approach

Definition

$$
g(-\Delta) u:=\sum_{n=1}^{\infty} g\left(\lambda_{n}\right)\left\langle u, e_{n}\right\rangle e_{n}
$$

where $g: \sigma(-\Delta) \rightarrow \mathbb{R}$,

Spectral approach

Definition

$$
g(-\Delta) u:=\sum_{n=1}^{\infty} g\left(\lambda_{n}\right)\left\langle u, e_{n}\right\rangle e_{n}
$$

where $g: \sigma(-\Delta) \rightarrow \mathbb{R}$,

$$
\operatorname{Dom} g(-\Delta):=\left\{u \in L^{2}(\Omega): \sum_{n=1}^{\infty} g\left(\lambda_{n}\right)^{2}\left|\left\langle u, e_{n}\right\rangle\right|^{2}<\infty\right\}
$$

Poisson equation with generalized laplacian

We obtained some results for Poisson equation with generalized fractional laplacian (I.K., B.Przeradzki, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 115 (2), Paper No. 58 (2021))

$$
g(-\Delta) u=f(x, u)
$$

Heat equation with generalized Laplacian

$$
u_{t}+g(-\Delta) u=f(t, x, u), \quad u(t, \partial \Omega)=0, \quad u(0, \cdot)=u_{0}
$$

Heat equation with generalized Laplacian

$$
u_{t}+g(-\Delta) u=f(t, x, u), \quad u(t, \partial \Omega)=0, \quad u(0, \cdot)=u_{0}
$$

g is positive, $f:[0, \infty) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that

$$
|f(t, x, u)| \leq a_{0}(t) a(x)+b|u|
$$

Heat equation with generalized Laplacian

$$
u_{t}+g(-\Delta) u=f(t, x, u), \quad u(t, \partial \Omega)=0, \quad u(0, \cdot)=u_{0}
$$

g is positive, $f:[0, \infty) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that

$$
|f(t, x, u)| \leq a_{0}(t) a(x)+b|u|
$$

where $a_{0}:[0, \infty) \rightarrow \mathbb{R}$ is continuous, $a \in L^{2}(\Omega), b \geq 0$.

Heat equation with generalized Laplacian

$$
u_{t}+g(-\Delta) u=f(t, x, u), \quad u(t, \partial \Omega)=0, \quad u(0, \cdot)=u_{0},
$$

g is positive, $f:[0, \infty) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that

$$
|f(t, x, u)| \leq a_{0}(t) a(x)+b|u|
$$

where $a_{0}:[0, \infty) \rightarrow \mathbb{R}$ is continuous, $a \in L^{2}(\Omega), b \geq 0$. Assume that the initial function $u_{0} \in L^{2}(\Omega)$.

Heat equation with generalized Laplacian

$$
u_{t}+g(-\Delta) u=f(t, x, u), \quad u(t, \partial \Omega)=0, \quad u(0, \cdot)=u_{0}
$$

g is positive, $f:[0, \infty) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that

$$
|f(t, x, u)| \leq a_{0}(t) a(x)+b|u|
$$

where $a_{0}:[0, \infty) \rightarrow \mathbb{R}$ is continuous, $a \in L^{2}(\Omega), b \geq 0$. Assume that the initial function $u_{0} \in L^{2}(\Omega)$. Putting in the problem Fourier series
expansions $u(t, \cdot)=\sum_{n=1}^{\infty} u_{n}(t) e_{n}(\cdot), u_{0}=\sum_{n=1}^{\infty} u_{0, n} e_{n}$, we have

Heat equation with generalized Laplacian

$$
u_{t}+g(-\Delta) u=f(t, x, u), \quad u(t, \partial \Omega)=0, \quad u(0, \cdot)=u_{0},
$$

g is positive, $f:[0, \infty) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that

$$
|f(t, x, u)| \leq a_{0}(t) a(x)+b|u|
$$

where $a_{0}:[0, \infty) \rightarrow \mathbb{R}$ is continuous, $a \in L^{2}(\Omega), b \geq 0$. Assume that the initial function $u_{0} \in L^{2}(\Omega)$. Putting in the problem Fourier series
expansions $u(t, \cdot)=\sum_{n=1}^{\infty} u_{n}(t) e_{n}(\cdot), u_{0}=\sum_{n=1}^{\infty} u_{0, n} e_{n}$, we have
$u_{n}^{\prime}(t)+g\left(\lambda_{n}\right) u_{n}(t)=f_{n}(t)(u)$,
where

$$
f_{n}(t)(u):=\int_{\Omega} f(t, y, u(t, y)) e_{n}(x) \mathrm{d} y
$$

Heat equation with generalized Laplacian

Hence

$$
u_{n}(t)=u_{n, 0} \mathrm{e}^{-g\left(\lambda_{n}\right) t}+\int_{0}^{t} \mathrm{e}^{-g\left(\lambda_{n}\right)(t-s)} f_{n}(s)(u) \mathrm{d} s
$$

Heat equation with generalized Laplacian

Hence

$$
u_{n}(t)=u_{n, 0} \mathrm{e}^{-g\left(\lambda_{n}\right) t}+\int_{0}^{t} \mathrm{e}^{-g\left(\lambda_{n}\right)(t-s)} f_{n}(s)(u) \mathrm{d} s
$$

Fix $T>0$ and search for solutions on the interval $[0, T]$.

Heat equation with generalized Laplacian

Hence

$$
u_{n}(t)=u_{n, 0} \mathrm{e}^{-g\left(\lambda_{n}\right) t}+\int_{0}^{t} \mathrm{e}^{-g\left(\lambda_{n}\right)(t-s)} f_{n}(s)(u) \mathrm{d} s
$$

Fix $T>0$ and search for solutions on the interval $[0, T]$. Let X be a Banach space of sequences of real continuous functions $u_{n}:[0, T] \rightarrow \mathbb{R}$, $n \in \mathbb{N}$, such that

$$
\|u\|^{2}:=\sum_{n=1}^{\infty} \sup _{t \in[0, T]}\left|u_{n}(t)\right|^{2}<\infty
$$

where $u=\left(u_{n}\right)_{n \in \mathbb{N}}$.

Heat equation with generalized Laplacian

Suppose that

$$
\sum_{n=1}^{\infty} \frac{1}{g\left(\lambda_{n}\right)^{2}}<\infty
$$

Heat equation with generalized Laplacian

Suppose that

$$
\sum_{n=1}^{\infty} \frac{1}{g\left(\lambda_{n}\right)^{2}}<\infty
$$

Heat equation with generalized Laplacian

Suppose that

$$
\sum_{n=1}^{\infty} \frac{1}{g\left(\lambda_{n}\right)^{2}}<\infty
$$

Then the operator S defined by

$$
(S(v))_{n}(t):=v_{0, n} \mathrm{e}^{-g\left(\lambda_{n}\right) t}+\int_{0}^{t} \mathrm{e}^{-g\left(\lambda_{n}\right)(t-s)} f_{n}(s)(v) \mathrm{d} s
$$

for $v=\left(v_{m}\right)_{m \in \mathbb{N}} \in X$,

Heat equation with generalized Laplacian

Suppose that

$$
\sum_{n=1}^{\infty} \frac{1}{g\left(\lambda_{n}\right)^{2}}<\infty
$$

Then the operator S defined by

$$
(S(v))_{n}(t):=v_{0, n} \mathrm{e}^{-g\left(\lambda_{n}\right) t}+\int_{0}^{t} \mathrm{e}^{-g\left(\lambda_{n}\right)(t-s)} f_{n}(s)(v) \mathrm{d} s
$$

for $v=\left(v_{m}\right)_{m \in \mathbb{N}} \in X$, maps X into itself.

Heat equation with generalized Laplacian

Suppose that

$$
\sum_{n=1}^{\infty} \frac{1}{g\left(\lambda_{n}\right)^{2}}<\infty
$$

Then the operator S defined by

$$
(S(v))_{n}(t):=v_{0, n} \mathrm{e}^{-g\left(\lambda_{n}\right) t}+\int_{0}^{t} \mathrm{e}^{-g\left(\lambda_{n}\right)(t-s)} f_{n}(s)(v) \mathrm{d} s
$$

for $v=\left(v_{m}\right)_{m \in \mathbb{N}} \in X$, maps X into itself. Moreover, S is compact and if $b<1$, then S maps a ball in X with sufficiently large radius into itself.

Heat equation with generalized Laplacian

Suppose that

$$
\sum_{n=1}^{\infty} \frac{1}{g\left(\lambda_{n}\right)^{2}}<\infty
$$

Then the operator S defined by

$$
(S(v))_{n}(t):=v_{0, n} \mathrm{e}^{-g\left(\lambda_{n}\right) t}+\int_{0}^{t} \mathrm{e}^{-g\left(\lambda_{n}\right)(t-s)} f_{n}(s)(v) \mathrm{d} s
$$

for $v=\left(v_{m}\right)_{m \in \mathbb{N}} \in X$, maps X into itself. Moreover, S is compact and if $b<1$, then S maps a ball in X with sufficiently large radius into itself. By Schauder Fixed Point Theorem we obtain.

Heat equation with generalized Laplacian

Suppose that

$$
\sum_{n=1}^{\infty} \frac{1}{g\left(\lambda_{n}\right)^{2}}<\infty
$$

Then the operator S defined by

$$
(S(v))_{n}(t):=v_{0, n} \mathrm{e}^{-g\left(\lambda_{n}\right) t}+\int_{0}^{t} \mathrm{e}^{-g\left(\lambda_{n}\right)(t-s)} f_{n}(s)(v) \mathrm{d} s
$$

for $v=\left(v_{m}\right)_{m \in \mathbb{N}} \in X$, maps X into itself. Moreover, S is compact and if $b<1$, then S maps a ball in X with sufficiently large radius into itself. By Schauder Fixed Point Theorem we obtain.

Theorem 5

The initial-boundary value problem for heat equation with $g(-\Delta)$ has a solution.

Asymptotic behaviour of solutions

Theorem 6

$$
\begin{gather*}
u_{t}+g(-\Delta) u=f(x, u),\left.\quad u(t, \cdot)\right|_{\partial \Omega}=0, \quad u(0, \cdot)=u_{0} \in L^{2}(\Omega), \tag{1}\\
g(-\Delta) u=f(x, u),\left.\quad u\right|_{\partial \Omega}=0 . \tag{2}
\end{gather*}
$$

Asymptotic behaviour of solutions

Theorem 6

$$
\begin{gather*}
u_{t}+g(-\Delta) u=f(x, u),\left.\quad u(t, \cdot)\right|_{\partial \Omega}=0, \quad u(0, \cdot)=u_{0} \in L^{2}(\Omega), \tag{1}\\
g(-\Delta) u=f(x, u),\left.\quad u\right|_{\partial \Omega}=0 . \tag{2}
\end{gather*}
$$

Suppose f satisfies the Lipschitz condition

$$
|f(x, u)-f(x, v)| \leq L|u-v|
$$

for any $u, v \in \mathbb{R}$ and a.e. $x \in \Omega$, where $L<\beta:=\inf _{n \in \mathbb{N}} g\left(\lambda_{n}\right)$. Then (2) has the unique solution w and

Asymptotic behaviour of solutions

Theorem 6

$$
\begin{gather*}
u_{t}+g(-\Delta) u=f(x, u),\left.\quad u(t, \cdot)\right|_{\partial \Omega}=0, \quad u(0, \cdot)=u_{0} \in L^{2}(\Omega), \tag{1}\\
g(-\Delta) u=f(x, u),\left.\quad u\right|_{\partial \Omega}=0 . \tag{2}
\end{gather*}
$$

Suppose f satisfies the Lipschitz condition

$$
|f(x, u)-f(x, v)| \leq L|u-v|
$$

for any $u, v \in \mathbb{R}$ and a.e. $x \in \Omega$, where $L<\beta:=\inf _{n \in \mathbb{N}} g\left(\lambda_{n}\right)$. Then (2) has the unique solution w and all solutions u to (1) tend to w in $L^{2}(\Omega)$ as $t \rightarrow+\infty$:

$$
\lim _{t \rightarrow+\infty}\|u(t, \cdot)-w\|=0
$$

Applications of Semigroups

Let g be a real function defined on the spectrum $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of the Dirichlet Laplacian such that $\lim _{n \rightarrow \infty} g\left(\lambda_{n}\right)=+\infty$.

Definition

$$
T(t) u=\sum_{n=1}^{\infty} \mathrm{e}^{-g\left(\lambda_{n}\right) t}\left\langle u, e_{n}\right\rangle e_{n} \quad \text { for } u \in L^{2}(\Omega)
$$

Applications of Semigroups

Let g be a real function defined on the spectrum $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of the Dirichlet Laplacian such that $\lim _{n \rightarrow \infty} g\left(\lambda_{n}\right)=+\infty$.

Definition

$$
T(t) u=\sum_{n=1}^{\infty} \mathrm{e}^{-g\left(\lambda_{n}\right) t}\left\langle u, e_{n}\right\rangle e_{n} \quad \text { for } u \in L^{2}(\Omega)
$$

Proposition

The family $\{T(t)\}_{t \geq 0}$ is C_{0}-semigroup in $L^{2}(\Omega)$ with infinitesimal generator $-g(-\Delta)$.

Applications of Semigroups

We consider the following semilinear initial value problem

$$
\begin{equation*}
\boldsymbol{u}^{\prime}(t)=A \boldsymbol{u}(t)+\boldsymbol{f}(t, \boldsymbol{u}(t)), \quad \boldsymbol{u}(0)=\boldsymbol{u}_{0} \tag{3}
\end{equation*}
$$

Applications of Semigroups

We consider the following semilinear initial value problem

$$
\begin{equation*}
\boldsymbol{u}^{\prime}(t)=A \boldsymbol{u}(t)+\boldsymbol{f}(t, \boldsymbol{u}(t)), \quad \boldsymbol{u}(0)=\boldsymbol{u}_{0} \tag{3}
\end{equation*}
$$

A - generator of C_{0}-semigroup $\{T(t)\}_{t \geq 0}, f: X \times[0, \infty) \rightarrow X$ - continuous.

Applications of Semigroups

We consider the following semilinear initial value problem

$$
\begin{equation*}
\boldsymbol{u}^{\prime}(t)=A \boldsymbol{u}(t)+\boldsymbol{f}(t, \boldsymbol{u}(t)), \quad \boldsymbol{u}(0)=\boldsymbol{u}_{0} \tag{3}
\end{equation*}
$$

A - generator of C_{0}-semigroup $\{T(t)\}_{t \geq 0}, f: X \times[0, \infty) \rightarrow X$ - continuous. A solution $\boldsymbol{u} \in C([0, \infty), X)$ of the integral equation $\boldsymbol{u}(t)=T(t) \boldsymbol{u}_{0}+\int_{0}^{t} T(t-s) \boldsymbol{f}(s, \boldsymbol{u}(s)) \mathrm{d} s$ is called a mild solution of (3).

Applications of Semigroups

We consider the following semilinear initial value problem

$$
\begin{equation*}
\boldsymbol{u}^{\prime}(t)=A \boldsymbol{u}(t)+\boldsymbol{f}(t, \boldsymbol{u}(t)), \quad \boldsymbol{u}(0)=\boldsymbol{u}_{0} \tag{3}
\end{equation*}
$$

A - generator of C_{0}-semigroup $\{T(t)\}_{t \geq 0}, f: X \times[0, \infty) \rightarrow X$ - continuous. A solution $\boldsymbol{u} \in C([0, \infty), X)$ of the integral equation $\boldsymbol{u}(t)=T(t) \boldsymbol{u}_{0}+\int_{0}^{t} T(t-s) \boldsymbol{f}(s, \boldsymbol{u}(s)) \mathrm{d} s$ is called a mild solution of (3).

Theorem

If A is the generator of a compact semigroup $\{T(t)\}_{t \geq 0}, f:[0, \infty) \times U \rightarrow X$ is continuous, where $U \subset X$ is open then for every $u_{0} \in U$ there exists a $t_{1} \in(0, \infty)(3)$ has a mild solution $u \in C\left(\left[0, t_{1},\right], X\right)$.

Applications of Semigroups

We consider the following semilinear initial value problem

$$
\begin{equation*}
\boldsymbol{u}^{\prime}(t)=A \boldsymbol{u}(t)+\boldsymbol{f}(t, \boldsymbol{u}(t)), \quad \boldsymbol{u}(0)=\boldsymbol{u}_{0} \tag{3}
\end{equation*}
$$

A - generator of C_{0}-semigroup $\{T(t)\}_{t \geq 0}, f: X \times[0, \infty) \rightarrow X$ - continuous. A solution $\boldsymbol{u} \in C([0, \infty), X)$ of the integral equation $\boldsymbol{u}(t)=T(t) \boldsymbol{u}_{0}+\int_{0}^{t} T(t-s) \boldsymbol{f}(s, \boldsymbol{u}(s)) \mathrm{d} s$ is called a mild solution of (3).

Theorem

If A is the generator of a compact semigroup $\{T(t)\}_{t \geq 0}, f:[0, \infty) \times U \rightarrow X$ is continuous, where $U \subset X$ is open then for every $u_{0} \in U$ there exists a $t_{1} \in(0, \infty)$ (3) has a mild solution $u \in C\left(\left[0, t_{1},\right], X\right)$.

Theorem

Let A be the infinitesimal generator of a compact semigroup $\{T(t)\}_{t \geq 0}$. Let $f:[0,+\infty) \times X \rightarrow X$ be continuous and maps bounded sets in $[0,+\infty) \times X$ into bounded sets in X. Then for every $u_{0} \in X$ the initial value problem (3) has a global solution $\boldsymbol{u} \in C([0,+\infty), X)$ if there exist two locally integrable functions $k_{1}, k_{2}:[0,+\infty) \rightarrow[0,+\infty)$ such that $\|\boldsymbol{f}(t, \boldsymbol{u})\| \leq k_{1}(t)\|\boldsymbol{u}\|+k_{2}(t)$ for $t \in[0,+\infty), \boldsymbol{u} \in X$.

Applications of Semigroups

For the operator $A=-g(-\Delta)$, and mapping $f(t, u)=f(t, \cdot, u(\cdot))$ for $t \geq 0, u \in L^{2}(\Omega)$, the initial-boundary value problem

$$
\begin{equation*}
u_{t}+g(-\Delta) u=f(t, x, u),\left.\quad u(t, \cdot)\right|_{\partial \Omega}=0, \quad u(0, \cdot)=u_{0} \in L^{2}(\Omega) \tag{4}
\end{equation*}
$$

can be rewritten as (3).

Applications of Semigroups

For the operator $A=-g(-\Delta)$, and mapping $f(t, u)=f(t, \cdot, u(\cdot))$ for $t \geq 0, u \in L^{2}(\Omega)$, the initial-boundary value problem

$$
\begin{equation*}
u_{t}+g(-\Delta) u=f(t, x, u),\left.\quad u(t, \cdot)\right|_{\partial \Omega}=0, \quad u(0, \cdot)=u_{0} \in L^{2}(\Omega) \tag{4}
\end{equation*}
$$

can be rewritten as (3). We assume that $\lim _{n \rightarrow \infty} g\left(\lambda_{n}\right)=+\infty$ and

$$
f:[0, \infty) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}
$$

is continuous w.r.t. (t, u) for a.e. x, measurable w.r.t. x for each t and u and

$$
|f(t, x, u)| \leq a_{0}(t) a(x)+b|u|
$$

where $a_{0}:[0, \infty) \rightarrow[0,+\infty)$ is continuous, $a \in L^{2}(\Omega)$ and $b \geq 0$.

Applications of Semigroups

For the operator $A=-g(-\Delta)$, and mapping $f(t, u)=f(t, \cdot, u(\cdot))$ for $t \geq 0, u \in L^{2}(\Omega)$, the initial-boundary value problem

$$
\begin{equation*}
u_{t}+g(-\Delta) u=f(t, x, u),\left.\quad u(t, \cdot)\right|_{\partial \Omega}=0, \quad u(0, \cdot)=u_{0} \in L^{2}(\Omega) \tag{4}
\end{equation*}
$$

can be rewritten as (3). We assume that $\lim _{n \rightarrow \infty} g\left(\lambda_{n}\right)=+\infty$ and

$$
f:[0, \infty) \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}
$$

is continuous w.r.t. (t, u) for a.e. x, measurable w.r.t. x for each t and u and

$$
|f(t, x, u)| \leq a_{0}(t) a(x)+b|u|
$$

where $a_{0}:[0, \infty) \rightarrow[0,+\infty)$ is continuous, $a \in L^{2}(\Omega)$ and $b \geq 0$.

Theorem 7

Under the above assumptions, the problem (4) has a global mild solution.

Numerical simulations

We will use the simplest method for finding an approximate solution a partial sum of the Fourier series

$$
u(t, x)=\sum_{n=1}^{\infty} u_{n}(t) e_{n}(x)
$$

One can find the explicit formulas for all functions if the right-hand side f has the simple form $b u+f(x)$ and $\Omega:=(0, \pi) \subset \mathbb{R}$. We have

$$
\begin{gathered}
e_{n}(x):=\sqrt{\frac{2}{\pi}} \sin n x \\
u_{n}(t):=\left(u_{n, 0}-\frac{f_{n}}{g\left(n^{2}\right)-b}\right) \exp \left(-\left(g\left(n^{2}\right)-b\right) t\right)+\frac{f_{n}}{g\left(n^{2}\right)-b^{\prime}}
\end{gathered}
$$

where f_{n} is the n-th Fourier coefficient of $x \mapsto f(x)$.

Solutions to our problem for $f(x) \equiv 1, b=0$,

 $u_{0}(x)=x(\pi-x)$$g(z)=z$

$g(z)=z^{0.6}$

$g(z)=\sin ^{2} z$

Solutions to our problem for $f(x) \equiv 1, b=2$, $u_{0}(x)=x(\pi-x)$

$g(z)=z$

$g(z)=z^{0.6}$

$g(z)=\sin ^{2} z$

Solutions to our problem for $f(x)=1-\cos 2 x, b=4$,

 $u_{0}(x)=x(\pi-x)$$g(z)=z$

$g(z)=z^{0.6}$

$g(z)=\sin ^{2} z$

Thank you for your attention.

